Advertisements
Advertisements
Question
A survey was conducted to study the relationship between expenditure on accommodation (X) and expenditure on Food and Entertainment (Y) and the following results were obtained:
Details | Mean | SD |
Expenditure on Accommodation (₹) | 178 | 63.15 |
Expenditure on Food and Entertainment (₹) | 47.8 | 22.98 |
Coefficient of Correlation | 0.43 |
Write down the regression equation and estimate the expenditure on Food and Entertainment, if the expenditure on accommodation is ₹ 200.
Solution
`bar"X"` = 178, `bar"Y"` = 47.8, σx = 63.15, σy = 22.98, r = 0.43
byx = `"r"(sigma_"y")/(sigma_"x") = 0.43 xx 22.98/63.15` = 0.1565
Regression line of Y on X:
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y – 47.8 = 0.1565(X – 178)
Y = 0.1565X – 27.857 + 47.8
Y = 0.1565X + 19.94
When the expenditure on accommodation is ₹ 200 the expenditure on food and entertainments is,
Y = 0.1565X + 19.94
Y = 0.1565(200) + 19.94
= 31.3 + 19.94
= ₹ 51.24
APPEARS IN
RELATED QUESTIONS
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
When one regression coefficient is negative, the other would be
The lines of regression of X on Y estimates
The lines of regression intersect at the point
The term regression was introduced by
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.
The following information is given.
Details | X (in ₹) | Y (in ₹) |
Arithmetic Mean | 6 | 8 |
Standard Deviation | 5 | `40/3` |
Coefficient of correlation between X and Y is `8/15`. Find
- The regression Coefficient of Y on X
- The most likely value of Y when X = ₹ 100.