Advertisements
Advertisements
प्रश्न
X and Y are a pair of correlated variables. Ten observations of their values (X, Y) have the following results. ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55, Predict the value of y when the value of X is 6.
उत्तर
Given ∑X = 55, ∑XY = 350, ∑X2 = 385, ∑Y = 55
Regression coefficient of Y on X is
byx = `("N"sum"XY" - (sum"X")(sum"Y"))/("N".sum"X"^2 - (sum"X")^2)`
= `(10(350) - (55)(55))/(10(385) - (55)^2)`
= `(3500 - 3025)/(3850 - 3025)`
= `475/825`
= 0.576
∴ Regression line of Y on X is
`"Y" - bar"Y" = "b"_"yx"("X" - bar"X")`
Y − 5.5 = 0.576 (X − 5.5) .....`[∵ bar"X" = (sum"X")/"n" = 55/10 = 5.5; bar"Y" = (sum"Y")/"n" = 55/10 = 5.5]`
Y − 5.5 = 0.576X − 3.168
Y = 0.576X + 2.332
When X = 6, Y = 0.576(6) + 2.332
Y = 3.456 + 2.332
Y = 5.788
APPEARS IN
संबंधित प्रश्न
The following data give the height in inches (X) and the weight in lb. (Y) of a random sample of 10 students from a large group of students of age 17 years:
X | 61 | 68 | 68 | 64 | 65 | 70 | 63 | 62 | 64 | 67 |
Y | 112 | 123 | 130 | 115 | 110 | 125 | 100 | 113 | 116 | 125 |
Estimate weight of the student of a height 69 inches.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
A survey was conducted to study the relationship between expenditure on accommodation (X) and expenditure on Food and Entertainment (Y) and the following results were obtained:
Details | Mean | SD |
Expenditure on Accommodation (₹) | 178 | 63.15 |
Expenditure on Food and Entertainment (₹) | 47.8 | 22.98 |
Coefficient of Correlation | 0.43 |
Write down the regression equation and estimate the expenditure on Food and Entertainment, if the expenditure on accommodation is ₹ 200.
The two regression lines were found to be 4X – 5Y + 33 = 0 and 20X – 9Y – 107 = 0. Find the mean values and coefficient of correlation between X and Y.
The regression coefficient of X on Y
If the regression coefficient of Y on X is 2, then the regression coefficient of X on Y is
The term regression was introduced by
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.