Advertisements
Advertisements
प्रश्न
If X and Y are two variates, there can be at most
पर्याय
One regression line
Two regression lines
Three regression lines
More regression lines
उत्तर
Two regression lines
APPEARS IN
संबंधित प्रश्न
From the data given below:
Marks in Economics: | 25 | 28 | 35 | 32 | 31 | 36 | 29 | 38 | 34 | 32 |
Marks in Statistics: | 43 | 46 | 49 | 41 | 36 | 32 | 31 | 30 | 33 | 39 |
Find
- The two regression equations,
- The coefficient of correlation between marks in Economics and Statistics,
- The mostly likely marks in Statistics when the marks in Economics is 30.
Obtain the two regression lines from the following data N = 20, ∑X = 80, ∑Y = 40, ∑X2 = 1680, ∑Y2 = 320 and ∑XY = 480.
The following data relate to advertisement expenditure (in lakh of rupees) and their corresponding sales (in crores of rupees)
Advertisement expenditure | 40 | 50 | 38 | 60 | 65 | 50 | 35 |
Sales | 38 | 60 | 55 | 70 | 60 | 48 | 30 |
Estimate the sales corresponding to advertising expenditure of ₹ 30 lakh.
You are given the following data:
Details | X | Y |
Arithmetic Mean | 36 | 85 |
Standard Deviation | 11 | 8 |
If the Correlation coefficient between X and Y is 0.66, then find
- the two regression coefficients,
- the most likely value of Y when X = 10.
For 5 observations of pairs of (X, Y) of variables X and Y the following results are obtained. ∑X = 15, ∑Y = 25, ∑X2 = 55, ∑Y2 = 135, ∑XY = 83. Find the equation of the lines of regression and estimate the values of X and Y if Y = 8; X = 12.
The equations of two lines of regression obtained in a correlation analysis are the following 2X = 8 – 3Y and 2Y = 5 – X. Obtain the value of the regression coefficients and correlation coefficients.
The following data pertains to the marks in subjects A and B in a certain examination. Mean marks in A = 39.5, Mean marks in B = 47.5 standard deviation of marks in A = 10.8 and Standard deviation of marks in B = 16.8. coefficient of correlation between marks in A and marks in B is 0.42. Give the estimate of marks in B for the candidate who secured 52 marks in A.
Find the line regression of Y on X
X | 1 | 2 | 3 | 4 | 5 | 8 | 10 |
Y | 9 | 8 | 10 | 12 | 14 | 16 | 15 |
Using the following information you are requested to
- obtain the linear regression of Y on X
- Estimate the level of defective parts delivered when inspection expenditure amounts to ₹ 82
∑X = 424, ∑Y = 363, ∑X2 = 21926, ∑Y2 = 15123, ∑XY = 12815, N = 10.
Here X is the expenditure on inspection, Y is the defective parts delivered.
The following information is given.
Details | X (in ₹) | Y (in ₹) |
Arithmetic Mean | 6 | 8 |
Standard Deviation | 5 | `40/3` |
Coefficient of correlation between X and Y is `8/15`. Find
- The regression Coefficient of Y on X
- The most likely value of Y when X = ₹ 100.