Advertisements
Advertisements
प्रश्न
The following data show the values of sample mean `(bar"X")` and its range (R) for the samples of size five each. Calculate the values for control limits for mean, range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 11.2 | 11.8 | 10.8 | 11.6 | 11.0 | 9.6 | 10.4 | 9.6 | 10.6 | 10.0 |
Range | 7 | 4 | 8 | 5 | 7 | 4 | 8 | 4 | 7 | 9 |
(conversion factors for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
उत्तर
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | Total |
Mean `bar"X"` | 11.2 | 11.8 | 10.8 | 11.6 | 11.0 | 9.6 | 10.4 | 9.6 | 10.6 | 10.0 | 106.6 |
Range (R) | 7 | 4 | 8 | 5 | 7 | 4 | 8 | 4 | 7 | 9 | 63 |
The control limits for `bar"X"` chart is
`\overset{==}{"X"} = (sumbar"X")/"Number of samoles" = 106.6/10` = 10.66
`bar"R" = (sum"R")/"R" = 63/10` = 6.3
UCL = `\overset{==}{"X"} - "A"_2 bar"R"`
= 10.66 + (0.58)(6.3)
= 10.66 + 3.654 = 14.314
= 14.31
CL = `\overset{==}{"X"}` = 10.66
LCL = `\overset{==}{"X"} - "A"_2 bar"R"`
= 10.66 – (0.58)(6.3)
= 10.66 – 3.654
= 7.006
The control limits for Range chart is
UCL = `"D"_4 bar"R"` = 2.115(6.3)`
= 13.3245
= 13.32
CL = `bar"R"` = 6.3
LCL = `"D"_3 bar"R"` = 0(6.3) = 0
Conclusion: Since all the points of sample range is within UCL of R chart, the process is in control.
APPEARS IN
संबंधित प्रश्न
Define chance cause
What do you mean by product control?
Name the control charts for variables
Define R chart
Write the control limits for the R chart
A quality control inspector has taken ten ” samples of size four packets each from a potato chips company. The contents of the sample are given below, Calculate the control limits for mean and range chart.
Sample Number | Observations | |||
1 | 2 | 3 | 4 | |
1 | 12.5 | 12.3 | 12.6 | 12.7 |
2 | 12.8 | 12.4 | 12.4 | 12.8 |
3 | 12.1 | 12.6 | 12.5 | 12.4 |
4 | 12.2 | 12.6 | 12.5 | 12.3 |
5 | 12.4 | 12.5 | 12.5 | 12.5 |
6 | 12.3 | 12.4 | 12.6 | 12.6 |
7 | 12.6 | 12.7 | 12.5 | 12.8 |
8 | 12.4 | 12.3 | 12.6 | 12.5 |
9 | 12.6 | 12.5 | 12.3 | 12.6 |
10 | 12.1 | 12.7 | 12.5 | 12.8 |
(Given for n = 5, A2 = 0.58, D3 = 0 and D4 = 2.115)
The following data show the values of sample means and the ranges for ten samples of size 4 each. Construct the control chart for mean and range chart and determine whether the process is in control.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
`bar"X"` | 29 | 26 | 37 | 34 | 14 | 45 | 39 | 20 | 34 | 23 |
R | 39 | 10 | 39 | 17 | 12 | 20 | 05 | 21 | 23 | 15 |
Choose the correct alternative:
A typical control charts consists of
Choose the correct alternative:
R is calculated using
The following data gives the average life(in hours) and range of 12 samples of 5lamps each. The data are
Sample No | 1 | 2 | 3 | 4 | 5 | 6 |
Sample Mean | 1080 | 1390 | 1460 | 1380 | 1230 | 1370 |
Sample Range | 410 | 670 | 180 | 320 | 690 | 450 |
Sample No | 7 | 8 | 9 | 10 | 11 | 12 |
Sample Mean | 1310 | 1630 | 1580 | 1510 | 1270 | 1200 |
Sample Range | 380 | 350 | 270 | 660 | 440 | 310 |
Construct control charts for mean and range. Comment on the control limits.