Advertisements
Advertisements
प्रश्न
The function `f(x) = {{:((e^(3x) - e^(-5x))/x",", if x ≠ 0),(k, if x = 0):}` is continuous at x = 0 for the value of k, as ______.
विकल्प
3
5
2
8
MCQ
रिक्त स्थान भरें
उत्तर
The function `f(x) = {{:((e^(3x) - e^(-5x))/x",", if x ≠ 0),(k, if x = 0):}` is continuous at x = 0 for the value of k, as 8.
Explanation:
Since, f(x) is continuous at x = 0, then
LHL= RHL = f(0) or LHL = RHL = k
Now, LHL = `lim_(h rightarrow 0) (e^(3(0 - h)) - e^(-5(0 - h)))/(0 - h)`
= `lim_(h rightarrow 0) (e^(-3h) - e^(5h))/(-h)`
= `lim_(h rightarrow 0) ((e^(-3h) - 1)/(-h)) + lim_(h rightarrow 0) ((e^(5h) - 1)/h)`
= `3lim_(h rightarrow 0) ((e^(-3h) - 1)/(-3h)) + 5lim_(h rightarrow 0) ((e^(5h) - 1)/(5h))`
= 3 × 1 + 5 × 1
= 8
Thus, k = 8.
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?