Advertisements
Advertisements
प्रश्न
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
विकल्प
`1/4`
`(-costheta)/(2(1 - sintheta))`
`1/2`
`costheta/(2(1 - sintheta))`
MCQ
रिक्त स्थान भरें
उत्तर
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to `underline((-costheta)/(2(1 - sintheta)))`.
Explanation:
`1/(1 - sintheta + icostheta)`
= `1/((1 - sintheta) + icostheta) xx ((1 - sintheta) - icostheta)/((1 - sintheta) - icostheta)`
= `((1 - sintheta) - icostheta)/((1 - sintheta)^2 + cos^2theta)`
= `((1 - sintheta) - icostheta)/(2(1 - sintheta))`
= `(1 - sintheta)/(2(1 - sintheta)) + i(-costheta)/(2(1 - sintheta))`
Therefore, its imaginary part = `(-costheta)/(2(1 - sintheta))`
shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?