English

The imaginary part of 11-sinθ+icosθ is equal to ______ -

Advertisements
Advertisements

Question

The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______

Options

  • `1/4`

  • `(-costheta)/(2(1 - sintheta))`

  • `1/2`

  • `costheta/(2(1 - sintheta))`

MCQ
Fill in the Blanks

Solution

The imaginary part of `1/(1 - sintheta + icostheta)` is equal to `underline((-costheta)/(2(1 - sintheta)))`.

Explanation:

`1/(1 - sintheta + icostheta)`

= `1/((1 - sintheta) + icostheta) xx ((1 - sintheta) - icostheta)/((1 - sintheta) - icostheta)`

= `((1 - sintheta) - icostheta)/((1 - sintheta)^2 + cos^2theta)`

= `((1 - sintheta) - icostheta)/(2(1 - sintheta))`

= `(1 - sintheta)/(2(1 - sintheta)) + i(-costheta)/(2(1 - sintheta))`

Therefore, its imaginary part = `(-costheta)/(2(1 - sintheta))`

shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×