Advertisements
Advertisements
Question
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to ______
Options
`1/4`
`(-costheta)/(2(1 - sintheta))`
`1/2`
`costheta/(2(1 - sintheta))`
MCQ
Fill in the Blanks
Solution
The imaginary part of `1/(1 - sintheta + icostheta)` is equal to `underline((-costheta)/(2(1 - sintheta)))`.
Explanation:
`1/(1 - sintheta + icostheta)`
= `1/((1 - sintheta) + icostheta) xx ((1 - sintheta) - icostheta)/((1 - sintheta) - icostheta)`
= `((1 - sintheta) - icostheta)/((1 - sintheta)^2 + cos^2theta)`
= `((1 - sintheta) - icostheta)/(2(1 - sintheta))`
= `(1 - sintheta)/(2(1 - sintheta)) + i(-costheta)/(2(1 - sintheta))`
Therefore, its imaginary part = `(-costheta)/(2(1 - sintheta))`
shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
Is there an error in this question or solution?