Advertisements
Advertisements
प्रश्न
The mean of marks scored by 100 students was found to be 40. Later on it was discovered
that a score of 53 was misread as 83. Find the correct mean.
उत्तर
Mean marks of 100 students = 40
⇒Sum of marks of 100 students 100×40×4000
Correct value 53.
Incorrect value 83.
Correct sum = 4000-83+53
= 3970
∴ Correct mean =`3970/100`
= 39.7
APPEARS IN
संबंधित प्रश्न
Find the values of n and X in each of the following cases :
(i) `sum _(i = 1)^n`(xi - 12) = - 10 `sum _(i = 1)^n`(xi - 3) = 62
(ii) `sum _(i = 1)^n` (xi - 10) = 30 `sum _(i = 6)^n` (xi - 6) = 150 .
The sums of the deviations of a set of n values 𝑥1, 𝑥2, … . 𝑥11 measured from 15 and −3 are − 90 and 54 respectively. Find the valùe of n and mean.
Find the missing frequencies in the following frequency distribution if its known that the mean of the distribution is 50.
x | 10 | 30 | 50 | 70 | 90 | |
f | 17 | f1 | 32 | f2 | 19 | Total =120 |
Find the median of the following data (1-8)
31 , 38, 27, 28, 36, 25, 35, 40
Find the median of the following observations : 46, 64, 87, 41, 58, 77, 35, 90, 55, 92, 33. If 92 is replaced by 99 and 41 by 43 in the above data, find the new median?
If the median of 33, 28, 20, 25, 34, x is 29, find the maximum possible value of x.
The following is the data of wages per day : 5, 4, 7, 5, 8, 8, 8, 5, 7, 9, 5, 7, 9, 10, 8
The mode of the data is
A football player scored the following number of goals in the 10 matches:
1, 3, 2, 5, 8, 6, 1, 4, 7, 9
Since the number of matches is 10 (an even number), therefore, the median
= `(5^("th") "observation" + 6^("th") "observation")/2`
= `(8 + 6)/2` = 7
Is it the correct answer and why?
A class consists of 50 students out of which 30 are girls. The mean of marks scored by girls in a test is 73 (out of 100) and that of boys is 71. Determine the mean score of the whole class.
A total of 25 patients admitted to a hospital are tested for levels of blood sugar, (mg/dl) and the results obtained were as follows:
87 | 71 | 83 | 67 | 85 |
77 | 69 | 76 | 65 | 85 |
85 | 54 | 70 | 68 | 80 |
73 | 78 | 68 | 85 | 73 |
81 | 78 | 81 | 77 | 75 |
Find mean, median and mode (mg/dl) of the above data.