Advertisements
Advertisements
प्रश्न
The Mean of n observation x1, x2,..., xn is `bar"X"`. If (a - b) is added to each of the observation, show that the mean of the new set of observation is `bar"X"` + (a - b).
उत्तर
We have
`bar"X" = (x_1 + x_2 + ... + x_"n")/"n"` ...(i)
Let `bar"X"` be the mean of x1 + (a - b), x2 + (a - b),...,xn + (a - b). Then
`bar"X" = ([x_1 + (a - b)] + [x_2 + (a - b)] + ... + [x_2 + (a - b)])/"n"`
= `(x_1 + x_2 + ... + x_"n" + "n"(a - b))/"n"`
= `(x_1 + x_2 + ... + x_"n")/"n" + ("n"(a - b))/"n"`
= `bar"X" + (a - b)`. ...[Using (i)]
Hence proved.
APPEARS IN
संबंधित प्रश्न
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days | 0 - 6 | 6 - 10 | 10 -14 | 14 -20 | 20 -28 | 28 -38 | 38 -40 |
Number of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
The following table gives the number of branches and number of plants in the garden of a school.
No. of branches (x) | 2 | 3 | 4 | 5 | 6 |
No. of plants (f) | 49 | 43 | 57 | 38 | 13 |
Calculate the average number of branches per plant.
Find the mean of the following frequency distribution is 57.6 and the total number of observation is 50.
Class | 0-20 | 20-40 | 40-60 | 60-80 | 80-100 | 100-120 |
Frequency | 7 | `f_1` | 12 | `f_2` | 8 | 5 |
In an annual examination, marks (out of 90) obtained by students of Class X in mathematics are given below:
Marks Obtained |
0 – 15 | 15 – 30 | 30 – 45 | 45 – 60 | 60 – 75 | 75 – 90 |
Number of students |
2 | 4 | 5 | 20 | 9 | 10 |
Find the mean marks.
If the mean of the following distribution is 2.6, then the value of y is:
Variable (x) | 1 | 2 | 3 | 4 | 5 |
Frequency | 4 | 5 | y | 1 | 2 |
If the mean of 6, 7, x, 8, y, 14 is 9, then ______.
Mean of a certain number of observation is `overlineX`. If each observation is divided by m(m ≠ 0) and increased by n, then the mean of new observation is
The measurements (in mm) of the diameters of the head of the screws are given below :
Diameter (in mm) | no. of screws |
33 - 35 | 9 |
36 - 38 | 21 |
39 - 41 | 30 |
42 - 44 | 22 |
45 - 47 | 18 |
Calculate the mean diameter of the head of a screw by the ' Assumed Mean Method'.
There are 50 students in a class in which 40 are boys and rest are girls. The average weight of the class is 44 kgs and the average weight of the girls is 40 kgs. Find the average weight of the boys.
Find the mean of the following frequency distribution:
Class Interval | Frequency |
0 - 50 | 4 |
50 - 100 | 8 |
100 - 150 | 16 |
150 - 200 | 13 |
200 - 250 | 6 |
250 - 300 | 3 |