Advertisements
Advertisements
प्रश्न
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days | 0 - 6 | 6 - 10 | 10 -14 | 14 -20 | 20 -28 | 28 -38 | 38 -40 |
Number of students | 11 | 10 | 7 | 4 | 4 | 3 | 1 |
उत्तर
To find the class mark of each interval, the following relation is used.
`x_i = ("Upper class limit + Lower class limit")/2`
Taking 17 as the assumed mean (a), di and fidi are calculated as follows:
Number of days |
Number of students fi |
Mid value(xi) | di = xi − 17 | fixi |
0 − 6 | 11 | 3 | − 14 | 33 |
6 − 10 | 10 | 8 | −9 | 80 |
10 − 14 | 7 | 12 | −5 | 84 |
14 − 20 | 4 | 17 | 0 | 68 |
20 − 28 | 4 | 24 | 7 | 96 |
28 − 38 | 3 | 33 | 16 | 99 |
38 − 40 | 1 | 39 | 22 | 39 |
Total | 40 | 499 |
From the table, we obtain
`sumf_i = 40`
`sumf_ix_i = 499`
`"Mean " barx = ((sumf_ix_i)/(N))`
`= (499/40)`
=12.475
Therefore, the mean number of days is 12.48 days for which a student was absent.
संबंधित प्रश्न
The following table gives the frequency distribution of trees planted by different Housing Societies in a particular locality:
No. of Trees | No. of Housing Societies |
10-15 | 2 |
15-20 | 7 |
20-25 | 9 |
25-30 | 8 |
30-35 | 6 |
35-40 | 4 |
Find the mean number of trees planted by Housing Societies by using ‘Assumed Means Method’
The following table gives the literacy rate (in percentage) of 35 cities. Find the mean literacy rate.
Literacy rate (in %) | 45 − 55 | 55 − 65 | 65 − 75 | 75 − 85 | 85 − 95 |
Number of cities | 3 | 10 | 11 | 8 | 3 |
The following table gives the number of boys of a particular age in a class of 40 students. Calculate the mean age of the students
Age (in years) | 15 | 16 | 17 | 18 | 19 | 20 |
No. of students | 3 | 8 | 10 | 10 | 5 | 4 |
Find the missing frequencies in the following frequency distribution if it is known that the mean of the distribution is 50.
x | 10 | 30 | 50 | 70 | 90 | |
f | 17 | f1 | 32 | f2 | 19 | Total 120 |
The arithmetic mean of the following data is 14. Find the value of k
x1 | 5 | 10 | 15 | 20 | 25 |
f1 | 7 | k | 8 | 4 | 5 |
The following table gives the distribution of total household expenditure (in rupees) of manual workers in a city. Find the average expenditure (in rupees) per household.
Expenditure (in rupees) (x1) |
Frequency(f1) |
100 - 150 | 24 |
150 - 200 | 40 |
200 - 250 | 33 |
250 - 300 | 28 |
300 - 350 | 30 |
350 - 400 | 22 |
400 - 450 | 16 |
450 - 500 | 7 |
The following distribution shows the daily pocket allowance given to the children of a multistorey building. The average pocket allowance is Rs 18.00. Find out the missing frequency.
Class interval | 11 - 13 | 13 - 15 | 15 - 17 | 17 - 19 | 19 - 21 | 21 - 23 | 23 - 25 |
Frequency | 7 | 6 | 9 | 13 | - | 5 | 4 |
The daily expenditure of 100 families are given below. Calculate `f_1` and `f_2` if the mean daily expenditure is ₹ 188.
Expenditure (in Rs) |
140-160 | 160-180 | 180-200 | 200-220 | 220-240 |
Number of families |
5 | 25 | `f_1` | `f_2` | 5 |
Find the mean of the following data, using assumed-mean method:
Class | 0 – 20 | 20 – 40 | 40 – 60 | 60 – 80 | 80 – 100 | 100 - 120 |
Frequency | 20 | 35 | 52 | 44 | 38 | 31 |
Write the empirical relation between mean, mode and median.
The algebraic sum of the deviations of a frequency distribution from its mean is always ______.
If the mean of observation \[x_1 , x_2 , . . . . , x_n is x\] then the mean of x1 + a, x2 + a, ....., xn + a is
While computing mean of grouped data, we assume that the frequencies are ______.
A class teacher has the following absentee record of 40 students of a class for the whole term. Find the mean number of days a student was absent.
Number of days: | 0-6 | 6-12 | 12-18 | 18-24 | 24-30 | 30-36 | 36-42 |
Number of students: | 10 | 11 | 7 | 4 | 4 | 3 | 1 |
The following table shows the weight of 12 students:
Weight in kg. | 67 | 70 | 72 | 73 | 75 |
Number of students | 4 | 3 | 2 | 2 | 1 |
Find the Mean weight.
Find the mean wage of a worker from the following data:
Wages (In ₹) | 1400 | 1450 | 1500 | 1550 | 1600 | 1650 | 1700 |
Number of workers | 15 | 20 | 18 | 27 | 15 | 3 | 2 |
The marks obtained by a set of students in an examination all given below:
Marks | 5 | 10 | 15 | 20 | 25 | 30 |
Number of students | 6 | 4 | 6 | 12 | x | 4 |
Given that the mean marks of the set of students is 18, Calculate the numerical value of x.
In a small scale industry, salaries of employees are given in the following distribution table:
Salary (in Rs.) |
4000 - 5000 |
5000 - 6000 |
6000 - 7000 |
7000 - 8000 |
8000 - 9000 |
9000 - 10000 |
Number of employees |
20 | 60 | 100 | 50 | 80 | 90 |
Then the mean salary of the employee is?
A car travels from city A to city B, 120 km apart at an average speed of 50km/h. It then makes a return trip at an average speed of 60km/h. It covers another 120km distance at an average speed of 40km/h. The average speed over the entire 360km will be ______.
If mean = (3median - mode) . k, then the value of k is ______.