Advertisements
Advertisements
प्रश्न
The perimeter of a rectangle is 28x3+ 16x2 + 8x + 4. One of its sides is 8x2 + 4x. Find the other side
उत्तर
Perimeter of a rectangle (2l + 2b)
= 28x3 + 16x2 + 8x + 4
Let one side (l) = 8x2 + 4x
∴ 2l = 2 (8x2 + 4x) = 16x2 + 8x
∴ 2b = (28x3 + 16x2 + 8x + 4) - (16x2 + 8x)
= 28x3 + 16x2 + 8x + 4 - 16x2 - 8x
= 28x3 + 4
∴ Other side (b) = `(28"x"^3 + 4)/2 = 14"x"^3 + 2`
APPEARS IN
संबंधित प्रश्न
Subtract: - 8c from c + 3d
If m = 9x2 - 4xy + 5y2 and n = - 3x2 + 2xy - y2 find: 2m - n
Simplify: 3x + 5(2x + 6) - 7x
Multiply: 6a - 5b and - 2a
Multiply: 6xy2 - 7x2y2 + 10x3 and - 3x2y3
Copy and complete the following multi-plication:
2a - b + 3c
× 2a - 4b
Copy and complete the following multi-plication:
3m2 + 6m - 2n
× 5n - 3m
Multiply: mn4, m3n and 5m2n3
Simplify: `"y"/4 +"3y"/5`
Simplify: `"3y"/4 -"y"/5`