Advertisements
Advertisements
प्रश्न
The position vector of the point which divides the join of points `2vec"a" - 3vec"b"` and `vec"a" + vec"b"` in the ratio 3:1 is ______.
विकल्प
`(3vec"a" - 2vec"b")/2`
`(7vec"a" - 8vec"b")/4`
`(3vec"a")/4`
`(5vec"a")/4`
उत्तर
The position vector of the point which divides the join of points `2vec"a" - 3vec"b"` and `vec"a" + vec"b"` in the ratio 3:1 is `(5vec"a")/4`.
Explanation:
The given vectors are `2vec"a" - 3vec"b"` and `vec"a" + vec"b"` in the ratio 3:1.
∴ The position vector of the required point c which divides the join of the given vectors `vec"a"` and `vec"b"` is
`vec"c" = ("m"_1x_2 + "m"_2x_1)/("m"_1 + "m"_2)`
= `(1 * (2vec"a" - 3vec"b") + 3(vec"a" + vec"b))/(3 + 1)`
= `(2vec"a" - 3vec"b" + 3vec"a" + 3vec"b")/4`
= `(5vec"a")/4`
= `5/4 vec"a"`
APPEARS IN
संबंधित प्रश्न
Let \[\vec{a,} \vec{b,} \vec{c,} \vec{d}\] be the position vectors of the four distinct points A, B, C, D. If \[\vec{b} - \vec{a} = \vec{c} - \vec{d}\], then show that ABCD is a parallelogram.
If \[\vec{a,} \vec{b}\] are the position vectors of A, B respectively, find the position vector of a point C in AB produced such that AC = 3 AB and that a point D in BA produced such that BD = 2BA.
Show that the four points A, B, C, D with position vectors \[\vec{a,} \vec{b,} \vec{c,} \vec{d}\] respectively such that \[3 \vec{a} - 2 \vec{b} + 5 \vec{c} - 6 \vec{d} = 0,\] are coplanar. Also, find the position vector of the point of intersection of the line segments AC and BD.
The vertices A, B, C of triangle ABC have respectively position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\] with respect to a given origin O. Show that the point D where the bisector of ∠ A meets BC has position vector \[\vec{d} = \frac{\beta \vec{b} + \gamma \vec{c}}{\beta + \gamma},\text{ where }\beta = \left| \vec{c} - \vec{a} \right| \text{ and, }\gamma = \left| \vec{a} - \vec{b} \right|\]
Hence, deduce that the incentre I has position vector
\[\frac{\alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}}{\alpha + \beta + \gamma},\text{ where }\alpha = \left| \vec{b} - \vec{c} \right|\]
If the position vector of a point (−4, −3) be \[\vec{a,}\] find \[\left| \vec{a} \right|\]
If the position vector \[\vec{a}\] of a point (12, n) is such that \[\left| \vec{a} \right|\] = 13, find the value (s) of n.
If \[\vec{a}\] be the position vector whose tip is (5, −3), find the coordinates of a point B such that \[\overrightarrow{AB} =\] \[\vec{a}\], the coordinates of A being (4, −1).
The position vectors of points A, B and C are \[\lambda \hat{i} +\] 3 \[\hat{j}\],12\[\hat{i} + \mu\] \[\hat{j}\] and 11\[\hat{i} -\] 3 \[\hat{j}\] respectively. If C divides the line segment joining A and B in the ratio 3:1, find the values of \[\lambda\] and \[\mu\]
Find a unit vector in the direction of the resultant of the vectors
\[\hat{i} - \hat{j} + 3 \hat{k} , 2 \hat{i} + \hat{j} - 2 \hat{k} \text{ and }\hat{i} + 2 \hat{j} - 2 \hat{k} .\]
If the vertices of a triangle are the points with position vectors \[a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} , b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} , c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} ,\]
what are the vectors determined by its sides? Find the length of these vectors.
Find the position vector of a point R which divides the line segment joining points \[P \left( \hat{i} + 2 \hat{j} + \hat{k} \right) \text{ and Q }\left( - \hat{i} + \hat{j} + \hat{k} \right)\] internally 2:1.
Find the position vector of a point R which divides the line segment joining points:
\[P \left( \hat{i} + 2 \hat{j} + \hat{k}\right) \text { and } Q \left( - \hat{i} + \hat{j} + \hat{k} \right)\] externally
Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4, 1, −2).
Show that the points A, B, C with position vectors \[\vec{a} - 2 \vec{b} + 3 \vec{c} , 2 \vec{a} + 3 \vec{b} - 4 \vec{c}\] and \[- 7 \vec{b} + 10 \vec{c}\] are collinear.
Prove that the points having position vectors \[\hat{i} + 2 \hat{j} + 3 \hat{k} , 3 \hat{i} + 4 \hat{j} + 7 \hat{k} , - 3 \hat{i} - 2 \hat{i} - 5 \hat{k}\] are collinear.
If the points with position vectors \[10 \hat{i} + 3 \hat{j} , 12 \hat{i} - 5 \hat{j}\text{ and a }\hat{i} + 11 \hat{j}\] are collinear, find the value of a.
If \[\vec{a,} \vec{b}\] are two non-collinear vectors prove that the points with position vectors \[\vec{a} + \vec{b,} \vec{a} - \vec{b}\text{ and }\vec{a} + \lambda \vec{b}\] are collinear for all real values of λ.
If the points A(m, −1), B(2, 1) and C(4, 5) are collinear, find the value of m.
Show that the four points having position vectors
\[6 \hat{i} - 7 \hat{j} , 16 \hat{i} - 19 \hat{j} - 4 \hat{k} , 3 \hat{j} - 6 \hat{k} , 2 \hat{i} - 5 \hat{j} + 10 \hat{k}\] are coplanar.
Show that the four points A, B, C and D with position vectors \[\vec{a}\], \[\vec{b}\], \[\vec{c}\], \[\vec{d}\] respectively are coplanar if and only if \[3 \vec{a} - 2 \vec{b} + \vec{c} - 2 \vec{d} = \vec{0} .\]
If D is the mid-point of side BC of a triangle ABC such that \[\overrightarrow{AB} + \overrightarrow{AC} = \lambda \overrightarrow{AD} ,\] write the value of λ.
Find the position vector of the point which divides the join of points with position vectors `vec"a" + 3vec"b" and vec"a"- vec"b"` internally in the ratio 1 : 3.
Find the value of x such that the four-point with position vectors,
`"A"(3hat"i"+2hat"j"+hat"k"),"B" (4hat"i"+"x"hat"j"+5hat"k"),"c" (4hat"i"+2hat"j"-2hat"k")`and`"D"(6hat"i"+5hat"j"-hat"k")`are coplaner.
Find the position vector of a point R which divides the line joining the two points P and Q with position vectors `vec"OP" = 2vec"a" + vec"b"` and `vec"OQ" = vec"a" - 2vec"b"`, respectively, in the ratio 1:2 externally