Advertisements
Advertisements
प्रश्न
The prices of three commodities A, B and C are ₹ x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchases 2 units of C and sells 3 units of A and one unit of B . Person R purchases one unit of A and sells 3 unit of B and one unit of C. In the process, P, Q and R earn ₹ 15,000, ₹ 1,000 and ₹ 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method to solve the problem.)
उत्तर
Let x, y, z are commodities of A, B, C
2x – 4y + 5z = 15000 ..........(1)
3x + y – 2z = 1000 ..........(2)
– x + 3y + z = 4000 ..........(3)
Matrix form `[(2, -4, 5),(3, 1, -2),(-1, 3, 1)] [(x),(y),(z)] = [(15000),(1000),(4000)]`
AX = B
X = `"A"^-1"B"`
A = `[(2, -4, 5),(3, 1, -2),(-1, 3, 1)]`
|A| = 2(1 + 6)+ 4(3 – 2) + 5(9 + 1)
= 2(7) + 4(1) + 5(10)
= 14 + 4 + 50
= 68
≠ 0 A-1 exists.
adj A = `[(+(1 + 6), -(3 - 2), +(9 + 1)),(-(-4 - 15), +(2 + 5), -(6 - 4)),(+(8 - 5), -(-4 - 15), +(2 + 12))]^"T"`
= `[(7, -1, 10),(19, 7, -2),(3, 19, 14)]^"T"`
= `[(7, 19, 3),(-1, 7, 19),(10, -2, 14)]`
A–1 = `1/|"A"|`
adj A = `1/68 [(7, 19, 3),(-1, 7, 19),(10, -2, 14)]`
X = `"A"^-1"B"`
`[(x),(y),(z)] = 1/68[(7, 19, 3),(-1, 7, 19),(10, -2, 14)][(15000),(1000),(4000)]`
= `1/68[(105000 + 19000 + 12000),(-15000 + 7000 + 76000),(150000 - 2000 + 56000)]`
= `1/68[(136000),(68000),(204000)]`
`[(x),(y),(z)] = [(2000),(1000),(3000)]`
x = ₹ 2000, y = ₹ 1000, z = ₹ 3000
The prices per unit of A, B, and C are ₹ 2000, ₹ 1000, ₹ 3000
APPEARS IN
संबंधित प्रश्न
Solve the following system of linear equations by matrix inversion method:
2x + 5y = – 2, x + 2y = – 3
Solve the following system of linear equations by matrix inversion method:
2x – y = 8, 3x + 2y = – 2
Solve the following system of linear equations by matrix inversion method:
2x + 3y – z = 9, x + y + z = 9, 3x – y – z = – 1
A man is appointed in a job with a monthly salary of certain amount and a fixed amount of annual increment. If his salary was ₹ 19,800 per month at the end of the first month after 3 years of service and ₹ 23,400 per month at the end of the first month after 9 years of service, find his starting salary and his annual increment. (Use matrix inversion method to solve the problem.)
Solve the following systems of linear equations by Cramer’s rule:
5x – 2y + 16 = 0, x + 3y – 7 = 0
A family of 3 people went out for dinner in a restaurant. The cost of two dosai, three idlies and two vadais is ₹ 150. The cost of the two dosai, two idlies and four vadais is ₹ 200. The cost of five dosai, four idlies and two vadais is ₹ 250. The family has ₹ 350 in hand and they ate 3 dosai and six idlies and six vadais. Will they be able to manage to pay the bill within the amount they had?
Solve the following systems of linear equations by Gaussian elimination method:
2x – 2y + 3z = 2, x + 2y – z = 3, 3x – y + 2z = 1
Solve the following systems of linear equations by Gaussian elimination method:
2x + 4y + 6z = 22, 3x + 8y + 5z = 27, – x + y + 2z = 2
If ax² + bx + c is divided by x + 3, x – 5, and x – 1, the remainders are 21, 61 and 9 respectively. Find a, b and c. (Use Gaussian elimination method.)
A boy is walking along the path y = ax2 + bx + c through the points (– 6, 8), (– 2, – 12), and (3, 8). He wants to meet his friend at P(7, 60). Will he meet his friend? (Use Gaussian elimination method.)
Choose the correct alternative:
If `("AB")^-1 = [(12, -17),(-19, 27)]` and `"A"^-1 = [(1, -1),(-2, 3)]` then `"B"^-1` =
Choose the correct alternative:
If A = `[(3/5, 4/5),(x, 3/5)]` and AT = A–1, then the value of x is
Choose the correct alternative:
If A = `[(1, tan theta/2),(- tan theta/2, 1)]` and AB = I2, then B =
Choose the correct alternative:
If 0 ≤ θ ≤ π and the system of equations x + (sin θ)y – (cos θ)z = 0, (cos θ) x – y + z = 0, (sin θ) x + y + z = 0 has a non-trivial solution then θ is
Choose the correct alternative:
The augmented matrix of a system of linear equations is `[(1, 2, 7, 3),(0, 1, 4, 6),(0, 0, lambda - 7, mu + 7)]`. This system has infinitely many solutions if
Choose the correct alternative:
Let A = `[(2, -1, 1),(-1, 2, -1),(1, -1, 2)]` and 4B = `[(3, 1, -1),(1, 3, x),(-1, 1, 3)]`. If B is the inverse of A, then the value of x is