हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा ९

The radius of a circle with centre at origin is 30 units. Write the coordinates of the points where the circle intersects the axes. Find the distance between any two such points. - Mathematics

Advertisements
Advertisements

प्रश्न

The radius of a circle with centre at origin is 30 units. Write the coordinates of the points where the circle intersects the axes. Find the distance between any two such points.

योग

उत्तर


Radius of the circle = 30 units.

The point O is (0, 0).

Let a intersect the x-axis and b intersect the y-axis.

∴ The point A is (a, 0) and B is (0, b)

Distance = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2`

OA = `sqrt(("a" - 0)^2 + (0 - 0)^2`

30 = `sqrt("a"^2)`

Squaring on both sides

302 = a2

∴ a = 30

The point A is (30, 0)

OB = `sqrt((0 - 0)^2 + ("b" - 0)^2`

= `sqrt(0^2 + "b"^2)`

30 = `sqrt("b"^2)`

Squaring on both sides

302 = b2

∴ b = 30

The point B is (0, 30)

Distance AB = `sqrt((30 - 0)^2 + (0 - 30)^2`

= `sqrt(30^2 + 30^2)`

= `sqrt(900 + 900)`

= `sqrt(1800)`

= `sqrt(2 xx 900)`

= `30sqrt(2)`

∴ Distance between the two points = `30sqrt(2)`

shaalaa.com
Co-ordinates of Points and Distance
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Coordinate Geometry - Exercise 5.2 [पृष्ठ २०३]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 9 TN Board
अध्याय 5 Coordinate Geometry
Exercise 5.2 | Q 12 | पृष्ठ २०३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×