हिंदी

The sum of first 14 terms of an A.P. is 1050 and its 14th term is 140. Find the 20th term. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first 14 terms of an A.P. is 1050 and its 14th term is 140. Find the 20th term.

योग

उत्तर

Let 'a' be the first term and 'd' be the common difference of the given A.P.

Given,

S14 = 1050

`\implies 14/2 [2a + (14 - 1)d] = 1050`

`\implies` 7[2a + 13d] = 1050

`\implies` 2a + 13d = 150 

`\implies` a + 6.5d = 75   ...(i)

And t14 = 140

`\implies` a + 13d = 140   ...(ii)

Subtracting (i) from (ii), we get

6.5d = 65

⇒ d = 10

⇒ a + 13(10) = 140

⇒ a = 10

Thus, 20th term = t20 

= 10 + 19d

= 10 + 19(10)

= 200

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Arithmetic Progression - Exercise 10 (F) [पृष्ठ १४८]

APPEARS IN

सेलिना Mathematics [English] Class 10 ICSE
अध्याय 10 Arithmetic Progression
Exercise 10 (F) | Q 15 | पृष्ठ १४८
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×