हिंदी

The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of the products of elements of any row with the co-factors of corresponding elements is equal to ______.

रिक्त स्थान भरें

उत्तर

The sum of the products of elements of any row with the co-factors of corresponding elements is equal to the value of the determinant of the given matrix.

Explanation:

Let Δ = `|("a"_11, "a"_12, "a"_13),("a"_21, "a"_22, "a"_23),("a"_31, "a"_32, "a"_33)|`

Expanding along R1

`"a"_11 |("a"_22, "a"_23),("a"_32, "a"_33)| - "a"_12 |("a"_21, "a"_23),("a"_31, "a"_33)| + "a"_13 |("a"_21,"a"_22),("a"_31, "a"_32)|`

⇒ `"a"_11"M"_11 + "a"_12"M"_12 + "a"_13"M"_13`  ....(Where M11, M12 and M13 are the minors of the corresponding elements)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Determinants - Exercise [पृष्ठ ८३]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 4 Determinants
Exercise | Q 44 | पृष्ठ ८३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Write Minors and Cofactors of the elements of following determinants:

`|(a,c),(b,d)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,0),(0,1,0),(0,0,1)|`


Write Minors and Cofactors of the elements of following determinants:

`|(1,0,4),(3,5,-1),(0,1,2)|`


Using Cofactors of elements of second row, evaluate `triangle = |(5,3,8),(2,0,1),(1,2, 3)|`


Using Cofactors of elements of third column, evaluate `triangle = |(1,x,yz),(1,y,zx),(1,z,xy)|`


If `triangle = |(a_11,a_12,a_13),(a_21,a_22,a_23),(a_31,a_32,a_33)|` and Aij is Cofactors of aij, then value of Δ is given by ______.


Using matrices, solve the following system of equations :

2x - 3y + 5z = 11

3x + 2y - 4z = -5

x + y - 2z = -3


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}- 1 & 4 \\ 2 & 3\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}1 & - 3 & 2 \\ 4 & - 1 & 2 \\ 3 & 5 & 2\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}0 & 2 & 6 \\ 1 & 5 & 0 \\ 3 & 7 & 1\end{bmatrix}\]


Write the minor and cofactor of element of the first column of the following matrix and hence evaluate the determinant:

\[A = \begin{bmatrix}2 & - 1 & 0 & 1 \\ - 3 & 0 & 1 & - 2 \\ 1 & 1 & - 1 & 1 \\ 2 & - 1 & 5 & 0\end{bmatrix}\]


If \[A = \begin{vmatrix}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{vmatrix}\]  and Cij is cofactor of aij in A, then value of |A| is given 




If Cij is the cofactor of the element aij of the matrix \[A = \begin{bmatrix}2 & - 3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & - 7\end{bmatrix}\], then write the value of a32C32.


Write \[A^{- 1}\text{ for }A = \begin{bmatrix}2 & 5 \\ 1 & 3\end{bmatrix}\]


If \[A = \begin{bmatrix}5 & 6 & - 3 \\ - 4 & 3 & 2 \\ - 4 & - 7 & 3\end{bmatrix}\] , then write the cofactor of the element a21 of its 2nd row.


Find A–1 if A = `[(0, 1, 1),(1, 0, 1),(1, 1, 0)]` and show that A–1 = `("A"^2 - 3"I")/2`.


If A is a matrix of order 3 × 3, then number of minors in determinant of A are ______.


If A `= [(0,1,1),(1,0,1),(1,1,0)] "then"  ("A"^2 - 3"I")/2 =` ____________.


Evaluate the determinant `Delta = abs (("log"_3  512, "log"_4  3),("log"_3  8, "log"_4  9))`


`abs(("cos"  15°, "sin"  15°),("sin"  75°, "cos"  75°))`


Find the minor of 6 and cofactor of 4 respectively in the determinant `Delta = abs ((1,2,3),(4,5,6),(7,8,9))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×