Advertisements
Advertisements
प्रश्न
The sum of three consecutive terms of an A.P. is 21 and the sum of their squares is 165. find these terms.
योग
उत्तर
Let the treee consecutive terms in A.P.be a-d, a and a+d.
`∴ (a-d)+a+(a+d)=21`
`⇒ a=7` ............(1)
Also , `(a-d)^2+a^2+(a+d)^2=165`
`⇒a^2+d^2-2ad+a^2+a^2+d^2+2ad=165`
`⇒ 3a^2+2d^2=165`
`⇒ 3xx(7)^2+2d^2=165`.............[from (1)]
`⇒ 3xx49+2d^2=165`
`⇒ 147+2d^2=165`
`⇒ 2d^2=18`
`⇒d^2=9`
`⇒ d=+-3`
when `a=7 and d=3`
Required terms =`a-d, a and a+d`
`=7-3,7,7+3`
`=4,7,10`
When `a=7 and d=-3`
Required terms=` a-d, a and a+d`
` = 7-(-3),7,7+(-3)`
`=10,7,4`
shaalaa.com
Simple Applications of Arithmetic Progression
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?