English

The Sum of Three Consecutive Terms of an A.P. is 21 and the Sum of Their Squares is 165. Find These Terms. -

Advertisements
Advertisements

Question

The sum of three consecutive terms of an A.P. is 21 and the sum of their squares is 165. find these terms.

Sum

Solution

Let the treee consecutive terms in A.P.be a-d, a and a+d.

`∴ (a-d)+a+(a+d)=21`

`⇒ a=7`           ............(1) 

Also , `(a-d)^2+a^2+(a+d)^2=165`

`⇒a^2+d^2-2ad+a^2+a^2+d^2+2ad=165`

`⇒ 3a^2+2d^2=165`

`⇒ 3xx(7)^2+2d^2=165`.............[from (1)]

`⇒ 3xx49+2d^2=165` 

`⇒ 147+2d^2=165` 

`⇒ 2d^2=18`

`⇒d^2=9`

`⇒ d=+-3` 

when `a=7 and d=3`

Required terms =`a-d, a and a+d`

                       `=7-3,7,7+3`

                       `=4,7,10` 

When `a=7 and d=-3`

Required terms=` a-d, a and a+d`

                       ` = 7-(-3),7,7+(-3)`

                       `=10,7,4`

shaalaa.com
Simple Applications of Arithmetic Progression
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×