Advertisements
Advertisements
प्रश्न
The three vertices of a parallelogram taken in order are (–1, 0), (3, 1) and (2, 2) respectively. Find the coordinates of the fourth vertex.
योग
उत्तर
Let A(–1, 0), B(3, 1), C(2, 2) and D(x, y) be the vertices of a parallelogram ABCD taken in order. Since, the diagonals of a parallelogram bisect each other.
∴ Coordiantes of the mid-point of AC = Coordinates of the mid-point of BD
`\Rightarrow ( \frac{-1+2}{2},\ \frac{0+2}{2})=(\frac{3+x}{2},\ \frac{1+y}{2})`
`\Rightarrow ( \frac{1}{2},\ 1)=( \frac{3+x}{2},\frac{y+1}{2})`
`\Rightarrow \frac{3+x}{2}=\frac{1}{2}\text{ and }\frac{y+1}{2}=1`
⇒ x = – 2 and y = 1
Hence, the fourth vertex of the parallelogram is (–2, 1).
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?