हिंदी

The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to ______. -

Advertisements
Advertisements

प्रश्न

The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to ______.

विकल्प

  • 764

  • 765

  • 766

  • 767

MCQ
रिक्त स्थान भरें

उत्तर

The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to 766.

Explanation:

Given that order of matrix A is 3 × 3,

Let A = `[(a, b, c),(d, e, f),(g, h, i)]_(3 xx 3)`

Then AT = `[(a, d, g),(b, e, h),(c, f, i)]_(3 xx 3)`

AAT = `[(a, b, c),(d, e, f),(g, h, i)][(a, d, g),(b, e, h),(c, f, i)]`

⇒ AAT = `[(a^2 + b^2 + c^2, ad + be + cf, ag + bh + ci),(ad + be + fc, d^2 + e^2 + f^2, dg + eh + fi),(ga + hb + ci, gd + he + fi, g^2 + h^2 + i^2)]`

Now, sum of all the diagonal entries of AAT = 9

⇒ Tr(AAT) = 9

⇒ a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 = 9  ...(i)

Given that matrix A having entries from the set {0, 1, 2, 3}

Hence a, b, c, d, e, f, g, h, i, ∈{0, 1, 2, 3}

S.N. Case Number of matrices
1 All→1s `(9!)/(9!)` = 1
2 One→3,
Remaining→0s
`(9!)/(1!8!)` = 9
3 One→2
Five→1s
Three→0s
`(9!)/(1!5!3!)` = 504
4 Two→2s
One→1
Six→0s
`(9!)/(2!6!)` = 252

So total number of ways = `(9!)/(9!) = (9!)/(1!8!) + (9!)/(1!5!3!) + (9!)/(2!6!)` = 1 + 9 + 504 + 252 = 766.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×