Advertisements
Advertisements
प्रश्न
The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to ______.
पर्याय
764
765
766
767
उत्तर
The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to 766.
Explanation:
Given that order of matrix A is 3 × 3,
Let A = `[(a, b, c),(d, e, f),(g, h, i)]_(3 xx 3)`
Then AT = `[(a, d, g),(b, e, h),(c, f, i)]_(3 xx 3)`
AAT = `[(a, b, c),(d, e, f),(g, h, i)][(a, d, g),(b, e, h),(c, f, i)]`
⇒ AAT = `[(a^2 + b^2 + c^2, ad + be + cf, ag + bh + ci),(ad + be + fc, d^2 + e^2 + f^2, dg + eh + fi),(ga + hb + ci, gd + he + fi, g^2 + h^2 + i^2)]`
Now, sum of all the diagonal entries of AAT = 9
⇒ Tr(AAT) = 9
⇒ a2 + b2 + c2 + d2 + e2 + f2 + g2 + h2 + i2 = 9 ...(i)
Given that matrix A having entries from the set {0, 1, 2, 3}
Hence a, b, c, d, e, f, g, h, i, ∈{0, 1, 2, 3}
S.N. | Case | Number of matrices |
1 | All→1s | `(9!)/(9!)` = 1 |
2 | One→3, Remaining→0s |
`(9!)/(1!8!)` = 9 |
3 | One→2 Five→1s Three→0s |
`(9!)/(1!5!3!)` = 504 |
4 | Two→2s One→1 Six→0s |
`(9!)/(2!6!)` = 252 |
So total number of ways = `(9!)/(9!) = (9!)/(1!8!) + (9!)/(1!5!3!) + (9!)/(2!6!)` = 1 + 9 + 504 + 252 = 766.