Advertisements
Advertisements
प्रश्न
The unit of length convenient on the atomic scale is known as an angstrom and is denoted by `Å: 1Å = 10^(-10)m`. The size of a hydrogen atom is about 0.5 Å. What is the total atomic volume in m3 of a mole of hydrogen atoms?
उत्तर
Radius of hydrogen atom, r = 0.5 Å= 0.5 × 10–10 m
Volume of hydrogen atom = `4/3pir^3`
`= 4/3xx22/7xx(0.5xx10^(-10))^3`
=`0.524 xx 10^(-31) m^3`
According to Avagadro’s hypothesis, 1 mole of hydrogen contains 6.023 × 1023 hydrogen atoms.
∴ Volume of 1 mole of hydrogen atoms = NV1
= 6.023 × 1023 × 0.524 × 10–31
= 3.152 × 10–7 m3
APPEARS IN
संबंधित प्रश्न
A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is γ s. Show that a calorie has a magnitude 4.2 α–1 β–2 γ2 in terms of the new units.
The dimensional formula for latent heat is ______.
If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?
A function f(θ) is defined as: `f(θ) = 1 - θ + θ^2/(2!) - θ^3/(3!) + θ^4/(4!)` Why is it necessary for q to be a dimensionless quantity?
In the expression P = E l2 m–5 G–2, E, m, l and G denote energy, mass, angular momentum and gravitational constant, respectively. Show that P is a dimensionless quantity.
If velocity of light c, Planck’s constant h and gravitational contant G are taken as fundamental quantities then express mass, length and time in terms of dimensions of these quantities.
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass (m ) to energy (E ) as E = mc2, where c is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in MeV, where 1 MeV= 1.6 × 10–13 J; the masses are measured in unified atomic mass unit (u) where 1u = 1.67 × 10–27 kg.
- Show that the energy equivalent of 1 u is 931.5 MeV.
- A student writes the relation as 1 u = 931.5 MeV. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
The entropy of any system is given by `S = alpha^2betaIn[(mukR)/(Jbeta^2) + 3]` Where α and β are the constants µ J, k, and R are no. of moles, the mechanical equivalent of heat, Boltzmann constant, and gas constant respectively. `["take S" = (dQ)/T]`
Choose the incorrect option from the following.
The workdone by a gas molecule in an x' isolated system is given by, W = αβ2 `e^(-x^2/(alpha"KT"))`, where x is the displacement, k is the Boltzmann constant and T is the temperature. α and β are constants. Then the dimensions of β will be ______.
A wave is represented by y = a sin(At - Bx + C) where A, B, C are constants and t is in seconds and x is in metre. The Dimensions of A, B, and C are ______.