Advertisements
Advertisements
प्रश्न
The unit of length convenient on the atomic scale is known as an angstrom and is denoted by `Å: 1Å = 10^(-10)m`. The size of a hydrogen atom is about 0.5 Å. What is the total atomic volume in m3 of a mole of hydrogen atoms?
उत्तर
Radius of hydrogen atom, r = 0.5 Å= 0.5 × 10–10 m
Volume of hydrogen atom = `4/3pir^3`
`= 4/3xx22/7xx(0.5xx10^(-10))^3`
=`0.524 xx 10^(-31) m^3`
According to Avagadro’s hypothesis, 1 mole of hydrogen contains 6.023 × 1023 hydrogen atoms.
∴ Volume of 1 mole of hydrogen atoms = NV1
= 6.023 × 1023 × 0.524 × 10–31
= 3.152 × 10–7 m3
APPEARS IN
संबंधित प्रश्न
A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is γ s. Show that a calorie has a magnitude 4.2 α–1 β–2 γ2 in terms of the new units.
If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?
On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct ______.
- y = `a sin (2πt)/T`
- y = `a sin vt`
- y = `a/T sin (t/a)`
- y = `asqrt(2) (sin (2pit)/T - cos (2pit)/T)`
A function f(θ) is defined as: `f(θ) = 1 - θ + θ^2/(2!) - θ^3/(3!) + θ^4/(4!)` Why is it necessary for q to be a dimensionless quantity?
Give an example of a physical quantity which has a unit but no dimensions.
Give an example of a physical quantity which has neither unit nor dimensions.
If velocity of light c, Planck’s constant h and gravitational contant G are taken as fundamental quantities then express mass, length and time in terms of dimensions of these quantities.
An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.
The entropy of any system is given by `S = alpha^2betaIn[(mukR)/(Jbeta^2) + 3]` Where α and β are the constants µ J, k, and R are no. of moles, the mechanical equivalent of heat, Boltzmann constant, and gas constant respectively. `["take S" = (dQ)/T]`
Choose the incorrect option from the following.
A wave is represented by y = a sin(At - Bx + C) where A, B, C are constants and t is in seconds and x is in metre. The Dimensions of A, B, and C are ______.