मराठी

Give an example of a physical quantity which has neither unit nor dimensions. - Physics

Advertisements
Advertisements

प्रश्न

Give an example of a physical quantity which has neither unit nor dimensions.

टीपा लिहा

उत्तर

Specific density = `"density of medium"/"density of water at 4°C"`

It is a ratio of two same quantities. So, it is a unitless and dimensionless constant.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Units and Measurements - Exercises [पृष्ठ १०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Physics [English] Class 11
पाठ 2 Units and Measurements
Exercises | Q 2.31 (b) | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

The unit of length convenient on the atomic scale is known as an angstrom and is denoted by `Å: 1Å = 10^(-10)m`. The size of a hydrogen atom is about 0.5 Å. What is the total atomic volume in m3 of a mole of hydrogen atoms?


Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses, etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).


A physical quantity of the dimensions of length that can be formed out of c, G and `e^2/(4piε_0)` is (c is velocity of light, G is universal constant of gravitation and e is charge):


The dimensional formula for latent heat is ______.


If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?


On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct ______.

  1. y = `a sin  (2πt)/T`
  2. y = `a sin vt`
  3. y = `a/T sin (t/a)`
  4. y = `asqrt(2) (sin  (2pit)/T - cos  (2pit)/T)`

If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

  1. (P – Q)/R
  2. PQ – R
  3. PQ/R
  4. (PR – Q2)/R
  5. (R + Q)/P

Why length, mass and time are chosen as base quantities in mechanics?


An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.


P = `alpha/beta` exp `(-"az"/"K"_"B"theta)`

θ `→` Temperature

P `→` Pressure

K`→` Boltzmann constant

z `→` Distance

Dimension of β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×