Advertisements
Advertisements
प्रश्न
Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses, etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).
उत्तर
- The line joining a given object to our eye is known as the line of sight. When a train moves rapidly, the line of sight of a passenger sitting in the train for nearby trees changes its direction rapidly.
- As a result, the nearby trees and other objects appear to run in a direction opposite to the train’s motion. However, the line of sight of distant and large objects, e.g., hilltops, the moon, the stars, etc., almost remains unchanged (or changes by an extremely small angle). As a result, the distant object seems to be stationary.
APPEARS IN
संबंधित प्रश्न
A book with many printing errors contains four different formulas for the displacement y of a particle undergoing a certain periodic motion:
(a) y = a sin `(2pit)/T`
(b) y = a sin vt
(c) y = `(a/T) sin t/a`
d) y = `(a/sqrt2) (sin 2πt / T + cos 2πt / T )`
(a = maximum displacement of the particle, v = speed of the particle. T = time-period of motion). Rule out the wrong formulas on dimensional grounds.
A physical quantity of the dimensions of length that can be formed out of c, G and `e^2/(4piε_0)` is (c is velocity of light, G is universal constant of gravitation and e is charge):
The dimensional formula for latent heat is ______.
If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?
If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?
- (P – Q)/R
- PQ – R
- PQ/R
- (PR – Q2)/R
- (R + Q)/P
The volume of a liquid flowing out per second of a pipe of length l and radius r is written by a student as `v = π/8 (pr^4)/(ηl)` where P is the pressure difference between the two ends of the pipe and η is coefficient of viscosity of the liquid having dimensional formula ML–1 T–1. Check whether the equation is dimensionally correct.
An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.
Einstein’s mass-energy relation emerging out of his famous theory of relativity relates mass (m ) to energy (E ) as E = mc2, where c is speed of light in vacuum. At the nuclear level, the magnitudes of energy are very small. The energy at nuclear level is usually measured in MeV, where 1 MeV= 1.6 × 10–13 J; the masses are measured in unified atomic mass unit (u) where 1u = 1.67 × 10–27 kg.
- Show that the energy equivalent of 1 u is 931.5 MeV.
- A student writes the relation as 1 u = 931.5 MeV. The teacher points out that the relation is dimensionally incorrect. Write the correct relation.
The entropy of any system is given by `S = alpha^2betaIn[(mukR)/(Jbeta^2) + 3]` Where α and β are the constants µ J, k, and R are no. of moles, the mechanical equivalent of heat, Boltzmann constant, and gas constant respectively. `["take S" = (dQ)/T]`
Choose the incorrect option from the following.
The workdone by a gas molecule in an x' isolated system is given by, W = αβ2 `e^(-x^2/(alpha"KT"))`, where x is the displacement, k is the Boltzmann constant and T is the temperature. α and β are constants. Then the dimensions of β will be ______.