English

Give an example of a physical quantity which has neither unit nor dimensions. - Physics

Advertisements
Advertisements

Question

Give an example of a physical quantity which has neither unit nor dimensions.

Short Note

Solution

Specific density = `"density of medium"/"density of water at 4°C"`

It is a ratio of two same quantities. So, it is a unitless and dimensionless constant.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Units and Measurements - Exercises [Page 10]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 2 Units and Measurements
Exercises | Q 2.31 (b) | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A book with many printing errors contains four different formulas for the displacement y of a particle undergoing a certain periodic motion:

(a) y = a sin `(2pit)/T`

(b) y = a sin vt

(c) y = `(a/T) sin  t/a`

d) y = `(a/sqrt2) (sin 2πt / T + cos 2πt / T )`

(a = maximum displacement of the particle, v = speed of the particle. T = time-period of motion). Rule out the wrong formulas on dimensional grounds.


The unit of length convenient on the atomic scale is known as an angstrom and is denoted by `Å: 1Å = 10^(-10)m`. The size of a hydrogen atom is about 0.5 Å. What is the total atomic volume in m3 of a mole of hydrogen atoms?


Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses, etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).


The dimensional formula for latent heat is ______.


If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

  1. (P – Q)/R
  2. PQ – R
  3. PQ/R
  4. (PR – Q2)/R
  5. (R + Q)/P

A function f(θ) is defined as: `f(θ) = 1 - θ + θ^2/(2!) - θ^3/(3!) + θ^4/(4!)` Why is it necessary for q to be a dimensionless quantity?


The volume of a liquid flowing out per second of a pipe of length l and radius r is written by a student as `v = π/8 (pr^4)/(ηl)` where P is the pressure difference between the two ends of the pipe and η is coefficient of viscosity of the liquid having dimensional formula ML–1 T–1. Check whether the equation is dimensionally correct.


In the expression P = E l2 m–5 G–2, E, m, l and G denote energy, mass, angular momentum and gravitational constant, respectively. Show that P is a dimensionless quantity.


If velocity of light c, Planck’s constant h and gravitational contant G are taken as fundamental quantities then express mass, length and time in terms of dimensions of these quantities.


An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×