English

Give an example of a physical quantity which has a unit but no dimensions. - Physics

Advertisements
Advertisements

Question

Give an example of a physical quantity which has a unit but no dimensions.

Short Note

Solution

Solid angle Ω = `A/r^2` steradian and a plane angle θ = `L/r` radian. Both are dimensionless but have units.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Units and Measurements - Exercises [Page 10]

APPEARS IN

NCERT Exemplar Physics [English] Class 11
Chapter 2 Units and Measurements
Exercises | Q 2.31 (a) | Page 10

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is γ s. Show that a calorie has a magnitude 4.2 α–1 β–2 γin terms of the new units.


A book with many printing errors contains four different formulas for the displacement y of a particle undergoing a certain periodic motion:

(a) y = a sin `(2pit)/T`

(b) y = a sin vt

(c) y = `(a/T) sin  t/a`

d) y = `(a/sqrt2) (sin 2πt / T + cos 2πt / T )`

(a = maximum displacement of the particle, v = speed of the particle. T = time-period of motion). Rule out the wrong formulas on dimensional grounds.


The unit of length convenient on the atomic scale is known as an angstrom and is denoted by `Å: 1Å = 10^(-10)m`. The size of a hydrogen atom is about 0.5 Å. What is the total atomic volume in m3 of a mole of hydrogen atoms?


A physical quantity of the dimensions of length that can be formed out of c, G and `e^2/(4piε_0)` is (c is velocity of light, G is universal constant of gravitation and e is charge):


A function f(θ) is defined as: `f(θ) = 1 - θ + θ^2/(2!) - θ^3/(3!) + θ^4/(4!)` Why is it necessary for q to be a dimensionless quantity?


Why length, mass and time are chosen as base quantities in mechanics?


The volume of a liquid flowing out per second of a pipe of length l and radius r is written by a student as `v = π/8 (pr^4)/(ηl)` where P is the pressure difference between the two ends of the pipe and η is coefficient of viscosity of the liquid having dimensional formula ML–1 T–1. Check whether the equation is dimensionally correct.


In the expression P = E l2 m–5 G–2, E, m, l and G denote energy, mass, angular momentum and gravitational constant, respectively. Show that P is a dimensionless quantity.


If velocity of light c, Planck’s constant h and gravitational contant G are taken as fundamental quantities then express mass, length and time in terms of dimensions of these quantities.


The workdone by a gas molecule in an x' isolated system is given by, W = αβ2 `e^(-x^2/(alpha"KT"))`, where x is the displacement, k is the Boltzmann constant and T is the temperature. α and β are constants. Then the dimensions of β will be ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×