English

A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, - Physics

Advertisements
Advertisements

Question

A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is γ s. Show that a calorie has a magnitude 4.2 α–1 β–2 γin terms of the new units.

Numerical

Solution 1

Given that,

1 calorie = 4.2 (1 kg) (1 m2) (1 s–2)

New unit of mass = α kg

Hence, in terms of the new unit, 1 kg =`1/alpha = a^(-1)`

In terms of the new unit of length,

`1m = 1/beta = beta^(-1) or 1m^2 = beta^(-2)`

And, in terms of the new unit of time,

`1s = 1y = y^(-1)`

`1s^2  = y^(-2)`

`1s^(-2) = y^2`

∴ 1 calorie = 4.2 (1 α–1) (1 β–2) (1 γ2) = 4.2 α–1 β–2 γ2

shaalaa.com

Solution 2

`n_2=n_1u_1/u_2=n_1([M_1^aL_1^bT_1^c])/([M_2^aL_2^bT_2^c])`

= n1 `[M_1/M_2]^a[L_1/L_2]^b[T_1/T_2]^c`

1 cal = 4.2 kg m2 s-2 ∴ a = 1, b = 2, c = -2

SI New System
`n_1 =    4.2` `n_2 = ?`
`M_1 = 1 kg` `M_2 = alpha kg`
`L_1 = 1m` `L_2 = beta m`
`T_1 = 1 s` `T_2 = y  "second"`

Now, n2 `=4.2[(1kg)/(alphakg)]^1[(1m)/(betam)]^2[(1s)/(gammas)]^(-2)`

 `n_2 = 4.2 alpha^(-1) beta^(-2) gamma^2`

∴ 1 cal = `4.2 alpha^(-1) beta^(-2) gamma^2` in new system 

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Units and Measurements - Exercises [Page 35]

APPEARS IN

NCERT Physics [English] Class 11
Chapter 2 Units and Measurements
Exercises | Q 3 | Page 35

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

The dimensional formula for latent heat is ______.


If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?


On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct ______.

  1. y = `a sin  (2πt)/T`
  2. y = `a sin vt`
  3. y = `a/T sin (t/a)`
  4. y = `asqrt(2) (sin  (2pit)/T - cos  (2pit)/T)`

If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?

  1. (P – Q)/R
  2. PQ – R
  3. PQ/R
  4. (PR – Q2)/R
  5. (R + Q)/P

Give an example of a physical quantity which has a unit but no dimensions.


Give an example of a physical quantity which has neither unit nor dimensions.


In the expression P = E l2 m–5 G–2, E, m, l and G denote energy, mass, angular momentum and gravitational constant, respectively. Show that P is a dimensionless quantity.


If velocity of light c, Planck’s constant h and gravitational contant G are taken as fundamental quantities then express mass, length and time in terms of dimensions of these quantities.


The entropy of any system is given by `S = alpha^2betaIn[(mukR)/(Jbeta^2) + 3]` Where α and β are the constants µ J, k, and R are no. of moles, the mechanical equivalent of heat, Boltzmann constant, and gas constant respectively. `["take S" = (dQ)/T]`

Choose the incorrect option from the following.


P = `alpha/beta` exp `(-"az"/"K"_"B"theta)`

θ `→` Temperature

P `→` Pressure

K`→` Boltzmann constant

z `→` Distance

Dimension of β is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×