Advertisements
Advertisements
प्रश्न
Why length, mass and time are chosen as base quantities in mechanics?
उत्तर
Normally each physical quantity requires a unit or standard for its specification, so it appears that there must be as many units as there are physical quantities. However, it is not so. It has been found that if in mechanics we choose arbitrarily units of any three physical quantities we can express the units of all other physical quantities in mechanics in terms of these. So, length, mass and time are chosen as base quantities in mechanics because
- Length, mass and time cannot be derived from one another, that is these quantities are independent.
- All other quantities in mechanics can be expressed in terms of length, mass and time.
APPEARS IN
संबंधित प्रश्न
A calorie is a unit of heat or energy and it equals about 4.2 J where 1J = 1 kg m2s–2. Suppose we employ a system of units in which the unit of mass equals α kg, the unit of length equals β m, the unit of time is γ s. Show that a calorie has a magnitude 4.2 α–1 β–2 γ2 in terms of the new units.
Explain this common observation clearly : If you look out of the window of a fast moving train, the nearby trees, houses, etc. seem to move rapidly in a direction opposite to the train’s motion, but the distant objects (hill tops, the Moon, the stars etc.) seem to be stationary. (In fact, since you are aware that you are moving, these distant objects seem to move with you).
A physical quantity of the dimensions of length that can be formed out of c, G and `e^2/(4piε_0)` is (c is velocity of light, G is universal constant of gravitation and e is charge):
If area (A), velocity (V) and density (p) are taken as fundamental units, what is the dimensional formula for force?
On the basis of dimensions, decide which of the following relations for the displacement of a particle undergoing simple harmonic motion is not correct ______.
- y = `a sin (2πt)/T`
- y = `a sin vt`
- y = `a/T sin (t/a)`
- y = `asqrt(2) (sin (2pit)/T - cos (2pit)/T)`
If P, Q, R are physical quantities, having different dimensions, which of the following combinations can never be a meaningful quantity?
- (P – Q)/R
- PQ – R
- PQ/R
- (PR – Q2)/R
- (R + Q)/P
Give an example of a physical quantity which has neither unit nor dimensions.
The volume of a liquid flowing out per second of a pipe of length l and radius r is written by a student as `v = π/8 (pr^4)/(ηl)` where P is the pressure difference between the two ends of the pipe and η is coefficient of viscosity of the liquid having dimensional formula ML–1 T–1. Check whether the equation is dimensionally correct.
An artificial satellite is revolving around a planet of mass M and radius R, in a circular orbit of radius r. From Kepler’s Third law about the period of a satellite around a common central body, square of the period of revolution T is proportional to the cube of the radius of the orbit r. Show using dimensional analysis, that `T = k/R sqrt(r^3/g)`. where k is a dimensionless constant and g is acceleration due to gravity.
The entropy of any system is given by `S = alpha^2betaIn[(mukR)/(Jbeta^2) + 3]` Where α and β are the constants µ J, k, and R are no. of moles, the mechanical equivalent of heat, Boltzmann constant, and gas constant respectively. `["take S" = (dQ)/T]`
Choose the incorrect option from the following.