हिंदी

The value of constant c that makes the function f defined by f(x)={x2-c2;ifx<4cx+20 ;ifx>4 continuous for all real numbers is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of constant c that makes the function f defined by 

`f(x) = {{:(x^2-c^2; if x < 4),(cx+20  ; if x > 4):}`

continuous for all real numbers is ______.

विकल्प

  • −2

  • −1

  • 0

  • 2

MCQ
रिक्त स्थान भरें

उत्तर

The value of constant c that makes the function f defined by 

`f(x) = {{:(x^2-c^2; if x < 4),(cx+20  ; if x > 4):}`

continuous for all real numbers is −2.

Explanation:

L.H.L. `= lim_(x->4^-) f(x)`

= `lim_(h->0) f(4-h)`

= `lim_(h->0) (4-h)^2 - c^2`

= (4 - 0)2 − c2

= 16 − c2

R.H.L. `= lim_(x->4^+) f(x)`

= `lim_(h->0) f(4+h)`

= `lim_(h->0) c(4+h)+20`

= c(4 + 0) + 20

= 4c + 20

Given function is continuous, Then

L.H.L. = R.H.L.

16 − c2 = 4c + 20

c2 + 4c + 4 = 0

(c + 2)2 = 0

c + 2 = 0

c = −2

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Outside Delhi Set - 2
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×