Advertisements
Advertisements
प्रश्न
The value of constant c that makes the function f defined by
`f(x) = {{:(x^2-c^2; if x < 4),(cx+20 ; if x > 4):}`
continuous for all real numbers is ______.
विकल्प
−2
−1
0
2
MCQ
रिक्त स्थान भरें
उत्तर
The value of constant c that makes the function f defined by
`f(x) = {{:(x^2-c^2; if x < 4),(cx+20 ; if x > 4):}`
continuous for all real numbers is −2.
Explanation:
L.H.L. `= lim_(x->4^-) f(x)`
= `lim_(h->0) f(4-h)`
= `lim_(h->0) (4-h)^2 - c^2`
= (4 - 0)2 − c2
= 16 − c2
R.H.L. `= lim_(x->4^+) f(x)`
= `lim_(h->0) f(4+h)`
= `lim_(h->0) c(4+h)+20`
= c(4 + 0) + 20
= 4c + 20
Given function is continuous, Then
L.H.L. = R.H.L.
16 − c2 = 4c + 20
c2 + 4c + 4 = 0
(c + 2)2 = 0
c + 2 = 0
c = −2
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?