हिंदी

The value of 'n', such that the differential equation xndydx=y(logy-logx+1); (where x, y ∈ R+) is homogeneous, is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of  'n', such that the differential equation `x^ndy/dx = y(logy - logx + 1)`; (where x, y ∈ R+) is homogeneous, is ______.

विकल्प

  • 0

  • 1

  • 2

  • 3

MCQ
रिक्त स्थान भरें

उत्तर

The value of  'n', such that the differential equation `x^ndy/dx = y(logy - logx + 1)`; (where x, y ∈ R+) is homogeneous, is 1.

Explanation:

A differential equation of the form `dy/dx = f(x, y)` is said to be homogeneous if f(x, y) is a homogeneous function of degree 0.

Now, `x^ndy/dx = y(log_e  y/x + log_e) ⇒ dy/dx = y/x^n(log^e*(y/x))` = f(x, y); let f(x, y) be a homogeneous function of degree 0, if n = 1.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Board Sample Paper
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×