Advertisements
Advertisements
प्रश्न
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
उत्तर
In the given problem, there are 25 trees in a line with a well such that the distance between two trees is 5 meters and the distance between the well and the first tree is 10 meters.
So, the total distance covered to water first tree = 10 meters
Then he goes back to the well to get water.
So,
The total distance covered to water second tree = 25 meters
The total distance covered to water third tree = 35 meters
The total distance covered to water fourth tree = 45 meters
So, from second tree onwards, the distance covered by the gardener forms an A.P. with the first term as 25 and common difference as 10.
So, the total distance covered for 24 trees can be calculated by using the formula for the sum of n terms of an A.P,
`S_n = n/2 [2a + (n-1)d]`
We get,
`S_n = 24/2 [2(25) + (24 - 1)(10)]`
= 12 [ 50 +(23) (10)]
= 12 (50 + 230 )
= 12 (280)
= 3360
So, while watering the 24 trees he covered 3360 meters. Also, to water the first tree he covers 10 meters. So the distance covered while watering 25 trees is 3370 meters.
Now, the distance between the last tree and the well
= 10 + 24 (5)
= 10 + 120
= 130
So, to get back to the well he covers an additional 130 m. Therefore, the total distance covered by the gardener
= 3370 + 130
= 3500
Therefore, the total distance covered by the gardener is 3500 m .
APPEARS IN
संबंधित प्रश्न
The first and the last terms of an AP are 8 and 65 respectively. If the sum of all its terms is 730, find its common difference.
The first and last terms of an AP are 17 and 350, respectively. If the common difference is 9, how many terms are there, and what is their sum?
The 19th term of an AP is equal to 3 times its 6th term. If its 9th term is 19, find the AP.
Write an A.P. whose first term is a and common difference is d in the following.
a = –3, d = 0
For what value of n, the nth terms of the arithmetic progressions 63, 65, 67, ... and 3, 10, 17, ... equal?
The sum of first n terms of an A.P. is 3n2 + 4n. Find the 25th term of this A.P.
Q.6
Q.11
How many terms of the A.P. 27, 24, 21, …, should be taken so that their sum is zero?
In an AP, if Sn = n(4n + 1), find the AP.