Advertisements
Advertisements
प्रश्न
There are 25 trees at equal distances of 5 metres in a line with a well, the distance of the well from the nearest tree being 10 metres. A gardener waters all the trees separately starting from the well and he returns to the well after watering each tree to get water for the next. Find the total distance the gardener will cover in order to water all the trees.
उत्तर
In the given problem, there are 25 trees in a line with a well such that the distance between two trees is 5 meters and the distance between the well and the first tree is 10 meters.
So, the total distance covered to water first tree = 10 meters
Then he goes back to the well to get water.
So,
The total distance covered to water second tree = 25 meters
The total distance covered to water third tree = 35 meters
The total distance covered to water fourth tree = 45 meters
So, from second tree onwards, the distance covered by the gardener forms an A.P. with the first term as 25 and common difference as 10.
So, the total distance covered for 24 trees can be calculated by using the formula for the sum of n terms of an A.P,
`S_n = n/2 [2a + (n-1)d]`
We get,
`S_n = 24/2 [2(25) + (24 - 1)(10)]`
= 12 [ 50 +(23) (10)]
= 12 (50 + 230 )
= 12 (280)
= 3360
So, while watering the 24 trees he covered 3360 meters. Also, to water the first tree he covers 10 meters. So the distance covered while watering 25 trees is 3370 meters.
Now, the distance between the last tree and the well
= 10 + 24 (5)
= 10 + 120
= 130
So, to get back to the well he covers an additional 130 m. Therefore, the total distance covered by the gardener
= 3370 + 130
= 3500
Therefore, the total distance covered by the gardener is 3500 m .
APPEARS IN
संबंधित प्रश्न
The sum of three numbers in A.P. is –3, and their product is 8. Find the numbers
A contract on a construction job specifies a penalty for delay of completion beyond a certain date as follows: Rs. 200 for the first day, Rs. 250 for the second day, Rs. 300 for the third day, etc., the penalty for each succeeding day being Rs. 50 more than for the preceding day. How much money does the contractor have to pay as a penalty if he has delayed the work by 30 days.
If the nth term of the A.P. 9, 7, 5, ... is same as the nth term of the A.P. 15, 12, 9, ... find n.
Find the three numbers in AP whose sum is 15 and product is 80.
If the 10th term of an A.P. is 21 and the sum of its first 10 terms is 120, find its nth term.
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
A manufacturer of TV sets produces 600 units in the third year and 700 units in the 7th year. Assuming that the production increases uniformly by a fixed number every year, find:
- the production in the first year.
- the production in the 10th year.
- the total production in 7 years.
In a Arithmetic Progression (A.P.) the fourth and sixth terms are 8 and 14 respectively. Find that:
(i) first term
(ii) common difference
(iii) sum of the first 20 terms.
The sum of the first 2n terms of the AP: 2, 5, 8, …. is equal to sum of the first n terms of the AP: 57, 59, 61, … then n is equal to ______.
Find the sum:
`4 - 1/n + 4 - 2/n + 4 - 3/n + ...` upto n terms