Advertisements
Advertisements
प्रश्न
A man is employed to count Rs 10710. He counts at the rate of Rs 180 per minute for half an hour. After this he counts at the rate of Rs 3 less every minute than the preceding minute. Find the time taken by him to count the entire amount.
उत्तर
In the given problem, the total amount = Rs 10710.
For the first half and hour (30 minutes) he counts at a rate of Rs 180 per minute. So,
The amount counted in 30 minutes = (180) (30) = 5400
So, amount left after half an hour = 10710 - 5400 = 5310
After 30 minutes he counts at a rate of Rs 3 less every minute. So,
At 31st minute the rate of counting per minute = 177.
At 32nd minute the rate of counting per minute = 174.
So, the rate of counting per minute for each minute will form an A.P. with the first term as 177 and common difference as −3.
So, the total time taken to count the amount left after half an hour can be calculated by using the formula for the sum of n terms of an A.P,
`S_n = n/2 [ 2a + (n-1)d]`
We get,
`5310 = n/2 [ 2 (177) + (n-1) (-3) ] ` ..............(1)
5310(2) = n [354-3n + 3]
10620 = n (357 - 3n)
10620 = 357n - 3n2
So, we get the following quadratic equation,
3n2 - 357n + 10620 = 0
n2 - 119n + 3540 = 0
Solving the equation by splitting the middle term, we get,
n2 - 60n - 59n + 3540 = 0
n ( n - 60 ) - 59 ( n - 60) =0
So,
n - 59 = 0
n = 59
Or
n - 60 = 0
n = 60
\[Now let n = 60 then finding the last term, we get\]
\[ S_n = \frac{n}{2}\left[ a + l \right]\]
\[5310 = \frac{60}{2}\left[ 177 + l \right]\]
\[177 = 177 + l\]
\[l = 0\]
\[\text{ It means the work will be finesh in 59th minute only because 60th term is 0 } . \]
\[\text{ So, we will take n = 59 } \]
Therefore, the total time required for counting the entire amount = 30 + 59 minutes = 89 minutes
So, the total time required for counting the entire amount is 89 minutes .
APPEARS IN
संबंधित प्रश्न
How many terms of the series 54, 51, 48, …. be taken so that their sum is 513 ? Explain the double answer
Ramkali saved Rs 5 in the first week of a year and then increased her weekly saving by Rs 1.75. If in the nth week, her week, her weekly savings become Rs 20.75, find n.
Find the sum of the odd numbers between 0 and 50.
Find the sum of two middle most terms of the AP `-4/3, -1 (-2)/3,..., 4 1/3.`
Find the common difference of an AP whose first term is 5 and the sum of its first four terms is half the sum of the next four terms.
Find the sum: 1 + 3 + 5 + 7 + ... + 199 .
Write 5th term from the end of the A.P. 3, 5, 7, 9, ..., 201.
Q.6
In a ‘Mahila Bachat Gat’, Sharvari invested ₹ 2 on first day, ₹ 4 on second day and ₹ 6 on third day. If she saves like this, then what would be her total savings in the month of February 2010?
If the last term of an A.P. of 30 terms is 119 and the 8th term from the end (towards the first term) is 91, then find the common difference of the A.P. Hence, find the sum of all the terms of the A.P.