हिंदी

There Are Three Coins. One is Two-headed Coin (Having Head on Both Faces), Another is Biased Coin that Comes up Heads 75% of Times and Third is Also a Biased Coin that Comes up Tail 40% of the Times. - Mathematics

Advertisements
Advertisements

प्रश्न

There are three coins. One is two-headed coin (having head on both faces), another is biased coin that comes up heads 75% of the times and third is also a biased coin that comes up tail 40% of the times. One of the three coins is chosen at random and tossed, and it shows heads. What is the probability that it was the two-headed coin?     

उत्तर

\[\text{Let}: \]
\[\text{ A be the event of choosing two - headed coin, }  \]
\[\text{ B be the event of choosing a biased coin that comes up head 75 % of the times, }  \]
\[\text{ C be the event of choosing a biased coin that comes up tail 40 % of the times and } \]
\[\text{ E be the event of getting a head . } \]
\[\text{ Now } , \]
\[P\left( A \right) = P\left( B \right) = P\left( C \right) = \frac{1}{3} \text{ and} \]
\[P\left( E|A \right) = 1, P\left( E|B \right) = 75 % = \frac{75}{100} = \frac{3}{4} and P\left( E|C \right) = 60 % = \frac{60}{100} = \frac{3}{5}\]
\[\text{ So, using Bayes' theorem, we get } \]
\[P\left( \text{ the head shown was of two - headed coin } \right) = P\left( A|E \right)\]
\[ = \frac{P\left( A \right) \times P\left( E|A \right)}{P\left( A \right) \times P\left( E|A \right) + P\left( B \right) \times P\left( E|B \right) + P\left( C \right) \times P\left( E|C \right)}\]
\[ = \frac{\left( \frac{1}{3} \times 1 \right)}{\left( \frac{1}{3} \times 1 + \frac{1}{3} \times \frac{3}{4} + \frac{1}{3} \times \frac{3}{5} \right)}\]
\[ = \frac{\left( \frac{1}{3} \right)}{\left( \frac{1}{3} + \frac{1}{4} + \frac{1}{5} \right)}\]
\[ = \frac{\left( \frac{1}{3} \right)}{\left( \frac{20 + 15 + 12}{60} \right)}\]
\[ = \frac{\left( \frac{1}{3} \right)}{\left( \frac{47}{60} \right)}\]
\[ = \frac{60}{3 \times 47}\]
\[ = \frac{20}{47}\]

So, the probability that the head shown was of a two-headed coin is \[\frac{20}{47}\]

Disclaimer: The answer given in the book is incorrect. The same has been corrected here.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 31: Probability - Exercise 31.7 [पृष्ठ ९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 31 Probability
Exercise 31.7 | Q 15 | पृष्ठ ९७

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

There are three coins. One is a two-headed coin (having head on both faces), another is a biased coin that comes up heads 75% of the times and the third is also a biased coin that comes up tails 40% of the time. One of the three coins is chosen at random and tossed and it shows heads. What is the probability that it was the two-headed coin?


An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red?


A laboratory blood test is 99% effective in detecting a certain disease when it is in fact, present. However, the test also yields a false positive result for 0.5% of the healthy person tested (that is, if a healthy person is tested, then, with probability 0.005, the test will imply he has the disease). If 0.1 percent of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive?


Two groups are competing for the position on the board of directors of a corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.


Of the students in a school, it is known that 30% have 100% attendance and 70% students are irregular. Previous year results report that 70% of all students who have 100% attendance attain A grade and 10% irregular students attain A grade in their annual examination. At the end of the year, one student is chos~n at random from the school and he was found ·to have an A grade. What is the probability that the student has 100% attendance? Is regularity required only in school? Justify your answer


Three machines E1, E2 and E3 in a certain factory producing electric bulbs, produce 50%, 25% and 25% respectively, of the total daily output of electric bulbs. It is known that 4% of the bulbs produced by each of machines E1 and E2are defective and that 5% of those produced by machine E3 are defective. If one bulb is picked up at random from a day's production, calculate the probability that it is defective.


An insurance company insured 2000 scooter drivers, 4000 car drivers and 6000 truck drivers. The probabilities of an accident for them are 0.01, 0.03 and 0.15, respectively. One of the insured persons meets with an accident. What is the probability that he is a scooter driver or a car driver?


Three urns contains 2 white and 3 black balls; 3 white and 2 black balls and 4 white and 1 black ball respectively. One ball is drawn from an urn chosen at random and it was found to be white. Find the probability that it was drawn from the first urn.


The contents of three urns are as follows:
Urn 1 : 7 white, 3 black balls, Urn 2 : 4 white, 6 black balls, and Urn 3 : 2 white, 8 black balls. One of these urns is chosen at random with probabilities 0.20, 0.60 and 0.20 respectively. From the chosen urn two balls are drawn at random without replacement. If both these balls are white, what is the probability that these came from urn 3?


Two groups are competing for the positions of the Board of Directors of a Corporation. The probabilities that the first and the second groups will win are 0.6 and 0.4 respectively. Further, if the first group wins, the probability of introducing a new product is 0.7 and the corresponding probability is 0.3 if the second group wins. Find the probability that the new product introduced was by the second group.

 

An insurance company insured 3000 scooters, 4000 cars and 5000 trucks. The probabilities of the accident involving a scooter, a car and a truck are 0.02, 0.03 and 0.04 respectively. One of the insured vehicles meet with an accident. Find the probability that it is a (i) scooter (ii) car (iii) truck. 


Suppose we have four boxes ABCD containing coloured marbles as given below:
Figure

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A? box B? box C?


An insurance company insured 2000 scooters and 3000 motorcycles. The probability of an accident involving a scooter is 0.01 and that of a motorcycle is 0.02. An insured vehicle met with an accident. Find the probability that the accidented vehicle was a motorcycle.


In a factory, machine A produces 30% of the total output, machine B produces 25% and the machine C produces the remaining output. If defective items produced by machines AB and C are 1%, 1.2%, 2% respectively. Three machines working together produce 10000 items in a day. An item is drawn at random from a day's output and found to be defective. Find the probability that it was produced by machine B?


Three urns AB and C contain 6 red and 4 white; 2 red and 6 white; and 1 red and 5 white balls respectively. An urn is chosen at random and a ball is drawn. If the ball drawn is found to be red, find the probability that the ball was drawn from urn A.


Of the students in a college, it is known that 60% reside in a hostel and 40% do not reside in  hostel. Previous year results report that 30% of students residing in hostel attain A grade and 20% of ones not residing in hostel attain A grade in their annual examination. At the end of the year, one students is chosen at random from the college and he has an A grade. What is the probability that the selected student is a hosteler?


Coloured balls are distributed in four boxes as shown in the following table:

Box             Colour
Black White Red Blue
I
II
III
IV
3
2
1
4
4
2
2
3
5
2
3
1
6
2
1
5

A box is selected at random and then a ball is randomly drawn from the selected box. The colour of the ball is black, what is the probability that ball drawn is from the box III.


If a machine is correctly set up it produces 90% acceptable items. If it is incorrectly set up it produces only 40% acceptable item. Past experience shows that 80% of the setups are correctly done. If after a certain set up, the machine produces 2 acceptable items, find the probability that the machine is correctly set up.


A is known to speak truth 3 times out of 5 times. He throws a die and reports that it is one. Find the probability that it is actually one.


A speaks the truth 8 times out of 10 times. A die is tossed. He reports that it was 5. What is the probability that it was actually 5?


In answering a question on a multiple choice test a student either knows the answer or guesses. Let  \[\frac{3}{4}\]  be the probability that he knows the answer and \[\frac{1}{4}\]  be the probability that he guesses. Assuming that a student who guesses at the answer will be correct with probability \[\frac{1}{4}\]. What is the probability that a student knows the answer given that he answered it correctly?


A laboratory blood test is 99% effective in detecting a certain disease when its infection is present. However, the test also yields a false positive result for 0.5% of the healthy person tested (i.e. if a healthy person is tested, then, with probability 0.005, the test will imply he has the disease). If 0.1% of the population actually has the disease, what is the probability that a person has the disease given that his test result is positive?


A box contains 2 blue and 3 pink balls and another box contains 4 blue and 5 pink balls. One ball is drawn at random from one of the two boxes and it is found to be pink. Find the probability that it was drawn from first box


There is a working women's hostel in a town, where 75% are from neighbouring town. The rest all are from the same town. 48% of women who hail from the same town are graduates and 83% of the women who have come from the neighboring town are also graduates. Find the probability that a woman selected at random is a graduate from the same town


A box contains three coins: two fair coins and one fake two-headed coin is picked randomly from the box and tossed. What is the probability that it lands head up?


There are three social media groups on a mobile: Group I, Group II and Group III. The probabilities that Group I, Group II and Group III sending the messages on sports are `2/5, 1/2`, and `2/3` respectively. The probability of opening the messages by Group I, Group II and Group III are `1/2, 1/4` and `1/4` respectively. Randomly one of the messages is opened and found a message on sports. What is the probability that the message was from Group III


Solve the following:

In a factory which manufactures bulbs, machines A, B and C manufacture respectively 25%, 35% and 40% of the bulbs. Of their outputs, 5, 4 and 2 percent are respectively defective bulbs. A bulbs is drawn at random from the product and is found to be defective. What is the probability that it is manufactured by the machine B?


Suppose you have two coins which appear identical in your pocket. You know that one is fair and one is 2-headed. If you take one out, toss it and get a head, what is the probability that it was a fair coin?


Refer to Question 41 above. If a white ball is selected, what is the probability that it came from Bag 3


In a factory, machine A produces 30% of total output, machine B produces 25% and the machine C produces the remaining output. The defective items produced by machines A, B and C are 1%,1.2%, 2% respectively. An item is picked at random from a day's output and found to be defective. Find the probability that it was produced by machine B?


A speaks truth in 75% of the cases and B in 80% of the cases. The percentage of cases they are likely to contradict each other in making the same statement is ______.


The probability that A speaks truth is `4/5`, while the probability for B is `3/4`. The probability that they contradict each other when asked to speak on a fact is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×