Advertisements
Advertisements
प्रश्न
There are two bags, one of which contains 3 black and 4 white balls while the other contains 4 black and 3 white balls. A die is thrown. If it shows up 1 or 3, a ball is taken from the Ist bag; but it shows up any other number, a ball is chosen from the second bag. Find the probability of choosing a black ball.
उत्तर
Let E1 be the event of selecting Bag I
And E2 be the event of selecting Bag II
Let E3 be the event that black ball is selected
∴ P(E1) = `2/6 = 1/3` and P(E2) = `1 - 1/3 = 2/3`
`"P"("E"_3/"E"_1) = 3/7` and `"P"("E"_3/"E"_2) = 4/7`
∴ P(E3) = `"P"("E"_1) * "P"("E"_3/"E"_1) + "P"("E"_2) * "P"("E"_3/"E"_2)`
= `1/3*3/7 + 2/3*4/7`
= `(3 + 8)/21`
= `11/21`
Hence, the required probability is `11/21`.
APPEARS IN
संबंधित प्रश्न
A pair of dice is thrown 6 times. If getting a total of 9 is considered a success, what is the probability of at least 5 successes?
A fair coin is tossed 8 times, find the probability of at most six heads.
A coin is tossed 5 times. What is the probability that head appears an even number of times?
In a bolt factory, three machines A, B, and C manufacture 25%, 35% and 40% of the total production respectively. Of their respective outputs, 5%, 4% and 2% are defective. A bolt is drawn at random from the total production and it is found to be defective. Find the probability that it was manufactured by machine C.
A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.
A coin and a die are tossed. State sample space of following event.
A: Getting a head and an even number.
A coin and a die are tossed. State sample space of following event.
B: Getting a prime number.
Find total number of distinct possible outcomes n(S) of the following random experiment.
6 students are arranged in a row for a photograph.
Two dice are thrown. Write favourable outcomes for the following event.
Q: Sum of the numbers on two dice is 7.
A card is drawn at random from an ordinary pack of 52 playing cards. State the number of elements in the sample space if consideration of suits is taken into account.
Box-I contains 8 red (R11, R12, R13) and 2 blue (B11, B12) marbles while Box-II contains 2 red(R21, R22) and 4 blue (B21, B22, B23, B24) marbles. A fair coin is tossed. If the coin turns up heads, a marble is chosen from Box-I; if it turns up tails, a marble is chosen from Box-II. Describe the sample space.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn with replacement.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn without replacement.
From a group of 2 men (M1, M2) and three women (W1, W2, W3), two persons are selected. Describe the sample space of the experiment. If E is the event in which one man and one woman are selected, then which are the cases favourable to E?
A car manufacturing factory has two plants, X and Y. Plant X manufactures 70% of cars and plant Y manufactures 30%. 80% of the cars at plant X and 90% of the cars at plant Y are rated of standard quality. A car is chosen at random and is found to be of standard quality. What is the probability that it has come from plant X?
Prove that P(A ∪ B) = `"P"("A" ∩ "B") + "P"("A" ∩ bar"B") + "P"(bar"A" ∩ bar"B")`
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
Two natural numbers r, s are drawn one at a time, without replacement from the set S = {1, 2, 3, ...., n}. Find P[r ≤ p|s ≤ p], where p ∈ S.
Three bags contain a number of red and white balls as follows:
Bag 1:3 red balls, Bag 2:2 red balls and 1 white ball
Bag 3:3 white balls.
The probability that bag i will be chosen and a ball is selected from it is `"i"/6`, i = 1, 2, 3. What is the probability that a red ball will be selected?
A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement the probability of getting exactly one red ball is ______.
Refer to Question 74 above. The probability that exactly two of the three balls were red, the first ball being red, is ______.
A box contains 3 orange balls, 3 green balls and 2 blue balls. Three balls are drawn at random from the box without replacement. The probability of drawing 2 green balls and one blue ball is ______.
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is ______.
In a college, 30% students fail in physics, 25% fail in mathematics and 10% fail in both. One student is chosen at random. The probability that she fails in physics if she has failed in mathematics is ______.
A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
Three horses A, B, Care in a race. A is twice as likely to win as B, and B is twice as likely to win as C. The probability that C wins, P(C) is
In year 2019, the probability of getting 53 Sundays is
An urn contains 5 red and 2 green balls. A ball is drawn at random from the urn. If the drawn ball is green, then a red ball is added to the urn and if the drawn ball is red, then a green ball is added to the urn; the original ball is not returned to the urn. Now, a second ball is drawn at random from it. The probability that the second ball is red is: