Advertisements
Advertisements
प्रश्न
Three consecutive natural numbers are such that the square of the middle number exceeds the difference of the squares of the other two by 60. Assume the middle number to be x and form a quadratic equation satisfying the above statement. Hence; find the three numbers.
उत्तर
Let the numbers be x – 1, x and x + 1.
From the given information,
x2 = (x + 1)2 – (x – 1)2 + 60
x2 = x2 + 1 + 2x – x2 – 1 + 2x + 60
x2 = 4x + 60
x2 – 4x – 60 = 0
(x – 10)(x + 6) = 0
x = 10, – 6
Since, x is a natural number, so x = 10.
Thus, the three numbers are 9, 10 and 11.
APPEARS IN
संबंधित प्रश्न
A positive number is divided into two parts such that the sum of the squares of the two parts is 20. The square of the larger part is 8 times the smaller part. Taking x as the smaller part of the two parts, find the number.
The sum of a number and its reciprocal is 4.25. Find the number.
Find two consecutive positive odd numbers, the sum of whose squares is 74.
The denominator of a positive fraction is one more than twice the numerator. If the sum of the fraction and its reciprocal is 2.9; find the fraction.
Divide 20 into two parts such that three times the square of one part exceeds the other part by 10.
Out of three consecutive positive integers, the middle number is p. If three times the square of the largest is greater than the sum of the squares of the other two numbers by 67; calculate the value of p.
The product of the digits of a two digit number is 24. If its unit’s digit exceeds twice its ten’s digit by 2; find the number.
The difference between the digits of a two-digit number is 2 and the product of digits is 24. If tens digit is bigger, the number is ______.
If 18 is added to a two-digit number, its digits are reversed. If the product of the digits of the number is 24, the number is ______.
The sum of a number and its reciprocal is 4.25; the number is ______.