हिंदी

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is ______.

विकल्प

  • 9

  • 27

  • 81

  • 512

MCQ
रिक्त स्थान भरें

उत्तर

Total number of possible matrices of order 3 × 3 with each entry 2 or 0 is 512.

Explanation:

Since each element aij can be filled in two days ways (with either '2' or '0'), total number of possible matrices is 29 i.e., 512.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Matrices - Exercise [पृष्ठ ५९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 3 Matrices
Exercise | Q 54 | पृष्ठ ५९

संबंधित प्रश्न

In the matrix A = `[(2,5,19,-7),(35,-2, 5/2 ,12), (sqrt3, 1, -5 , 17)]`

The order of the matrix


If a matrix has 24 elements, what are the possible order it can have? What, if it has 13 elements?


Construct a 2 × 2 matrix, A = [aij], whose element is given by `a_(ij) = (i+j)^2/2`


Construct a 2 × 2 matrix, `A = [a_(ij)]`  whose elements are given by `a_(ij) = (1 + 2j)^2/2`


Construct a 3 × 4 matrix, whose elements are given by `a_(ij) = 1/2 |-3i + j|`


The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is ______.


Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k respectively.

If n = p, then the order of the matrix is 7X - 5Z is ______.


If A, B are symmetric matrices of same order, then AB − BA is a ______.


The monthly incomes of Aryan and Babban are in the ratio 3 : 4 and their monthly expenditures are in the ratio 5 : 7. If each saves Rs 15,000 per month, find their monthly incomes using matrix method. This problem reflects which value?


Find the matrix X for which:
`[(5, 4),(1,1)]` X=`[(1,-2),(1,3)]`


Construct a matrix A = [aij]2×2 whose elements aij are given by aij = e2ix sin jx.


In the matrix A = `[("a", 1, x),(2, sqrt(3), x^2 - y),(0, 5, (-2)/5)]`, write: The order of the matrix A


Construct a2 × 2 matrix where aij = |–2i + 3j|


If A is matrix of order m × n and B is a matrix such that AB′ and B′A are both defined, then order of matrix B is ______.


The order of [x y z] `[("a","h","g"),("h","b","f"),("g","f","c")] [("x"),("y"),("z")]` is ____________.


`[(2,0,3),(5,1,0),(0,1,-1)]`


`[(0,-1,1),(2,-3,4),(3,-3,4)]`


The order of the single matrix obtained from `[(1,-1),(0,2),(2,3)] {[(-1,0,2),(2,0,1)] - [(0,1,23),(1,0,21)]}` is ____________.


Total number of possible matrices of order 2 × 3 with each entry 1 or 0 is ____________.


The order of set A is 3 and that of set B is 2. What is the number of relations from A to B?


Consider the following information regarding the number of men and women workers in three factories I, II and III

  MEN WORKERS WOMEN WORKERS
I 30 25
II 25 31
III 27 26

Which of the following represent the above information in the form of a 3 × 2 matrix.


The total number of 3 × 3 matrices A having entries from the set {0, 1, 2, 3} such that the sum of all the diagonal entries of AAT is 9, is equal to ______.


Let P = `[(1, 0, 0),(3, 1, 0),(9, 3, 1)]` and Q = [qij] be two 3 × 3 martices such that Q – P5 = I3. Then `(q_21 + q_31)/q_32` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×