Advertisements
Advertisements
प्रश्न
Use the data given in below find out which option the order of reducing power is correct.
`"E"_("Cr"_2"O"_7^(2-)//"Cr"^(3+))^⊖`= 1.33 V `"E"_("Cl"_2//"Cl"^-)^⊖` = 1.36 V
`"E"_("MnO"_4^-//"Mn"^(2+))^⊖` = 1.51 V `"E"_("Cr"^(3+)//"Cr")^⊖` = - 0.74 V
विकल्प
\[\ce{Cr^{3+} < Cl– < Mn^{2+} < Cr}\]
\[\ce{Mn^{2+} < Cl– < Cr^{3+} < Cr}\]
\[\ce{Cr^{3+} < Cl– < Cr_2O_7^{2–} < MnO^{-}4}\]
\[\ce{Mn2+ < Cr3+ < Cl– < Cr}\]
उत्तर
\[\ce{Mn^{2+} < Cl– < Cr^{3+} < Cr}\]
Explanation:
Lower the value of standard reduction potential greater will be the reducing power.
APPEARS IN
संबंधित प्रश्न
Derive a relation between ΔH and ΔU for a chemical reaction. Draw neat labelled diagram of calomel electrode. Resistance and conductivity of a cell containing 0.001 M KCI solution at 298K are 1500Ω and 1.46x10-4 S.cm-1 respectively.
Among Zn and Cu, which would occur more readily in nature as metal and which as an ion?
E°cell for the given redox reaction is 2.71 V
Mg(s) + Cu2+ (0.01 M) → Mg2+ (0.001 M) + Cu(s)
Calculate Ecell for the reaction. Write the direction of flow of current when an external opposite potential applied is
(i) less than 2.71 V and
(ii) greater than 2.71 V
For the electrochemical cell:
M | M+ || X− | X,
E0(M+ | M) = 0.44 V, E0(X | X−) = 0.33 V
Which of the following is TRUE for this data?
For the cell \[\ce{Mg_{(s)}|Mg^{2+}_{( aq)}||Ag^+_{( aq)}|Ag_{(s)}}\], calculate the equilibrium constant at 25°C and maximum work that can be obtained during operation of cell.
Given: \[\ce{E^0_{{Mg^{2+}|Mg}}}\] = −2.37 V and \[\ce{E^0_{{Ag^{+}|Ag}}}\] = 0.80 V
Use the data given in below find out the most stable ion in its reduced form.
`"E"_("Cr"_2"O"_7^(2-)//"Cr"^(3+))^⊖`= 1.33 V `"E"_("Cl"_2//"Cl"^-)^⊖` = 1.36 V
`"E"_("MnO"_4^-//"Mn"^(2+))^⊖` = 1.51 V `"E"_("Cr"^(3+)//"Cr")^⊖` = - 0.74 V
`E_(cell)^Θ` for some half cell reactions are given below. On the basis of these mark the correct answer.
(a) \[\ce{H^{+} (aq) + e^{-} -> 1/2 H_2 (g); E^Θ_{cell} = 0.00V}\]
(b) \[\ce{2H2O (1) -> O2 (g) + 4H^{+} (aq) + 4e^{-}; E^Θ_{cell} = 1.23V}\]
(c) \[\ce{2SO^{2-}_{4} (aq) -> S2O^{2-}_{8} (aq) + 2e^{-}; E^Θ_{cell} = 1.96V}\]
(i) In dilute sulphuric acid solution, hydrogen will be reduced at cathode.
(ii) In concentrated sulphuric acid solution, water will be oxidised at anode.
(iii) In dilute sulphuric acid solution, water will be oxidised at anode.
(iv) In dilute sulphuric acid solution, \[\ce{SO4^{2-}}\] ion will be oxidised to tetrathionate ion at anode.
Match the terms given in Column I with the units given in Column II.
Column I | Column II |
(i) Λm | (a) S cm-¹ |
(ii) ECell | (b) m-¹ |
(iii) K | (c) S cm2 mol-¹ |
(iv) G* | (d) V |
Assertion: Mercury cell does not give steady potential.
Reason: In the cell reaction, ions are not involved in solution.
Given the data at 25°C
Ag + I– → Agl + e–; E° = – 0.152 V
Ag → Ag+ + e–; E° = – 0.800 V
The value of log Ksp for Ag I is :-