हिंदी

Use the identity: sin2A + cos2A = 1 to prove that tan2A + 1 = sec2A. Hence, find the value of tan A, when sec A = 53, where A is an acute angle. - Mathematics

Advertisements
Advertisements

प्रश्न

Use the identity: sin2A + cos2A = 1 to prove that tan2A + 1 = sec2A. Hence, find the value of tan A, when sec A = `5/3`, where A is an acute angle.

योग

उत्तर

`sin^2A + cos^2A = 1`

Dividing both sides by `cos^2A`:

`(sin^2A)/(cos^2A) + (cos^2A)/(cos^2A) = 1/(cos^2A)`

`tan^2A + 1 =  sec^2A`

Thus, the identity is proved.

Value of tan A when sec A = `5/3`

So, tan2 A + 1 `(5/3)^2`

⇒ tan2 A + `25/9 - 1`

⇒ tan2 A = `16/9`

⇒ tan A = `sqrt(16/9)`

⇒ tan A = `4/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (February) Standard - 30/6/1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×