Advertisements
Advertisements
Question
Use the identity: sin2A + cos2A = 1 to prove that tan2A + 1 = sec2A. Hence, find the value of tan A, when sec A = `5/3`, where A is an acute angle.
Sum
Solution
`sin^2A + cos^2A = 1`
Dividing both sides by `cos^2A`:
`(sin^2A)/(cos^2A) + (cos^2A)/(cos^2A) = 1/(cos^2A)`
`tan^2A + 1 = sec^2A`
Thus, the identity is proved.
Value of tan A when sec A = `5/3`
So, tan2 A + 1 `(5/3)^2`
⇒ tan2 A + `25/9 - 1`
⇒ tan2 A = `16/9`
⇒ tan A = `sqrt(16/9)`
⇒ tan A = `4/3`
shaalaa.com
Is there an error in this question or solution?