Advertisements
Advertisements
Question
If a sec θ + b tan θ = m and b sec θ + a tan θ = n, prove that a2 + n2 = b2 + m2
Sum
Solution
a secθ + b tanθ = m ....(i)
b secθ + a tanθ = n ....(ii)
Squaring both sides of the equations
a2 sec2θ + b2 tan2θ + 2ab secθ tanθ = m2
b2 sec2θ + a2 tan2θ + 2ab secθ tanθ = n2
− − − −
a2 (sec2θ − tan2θ) − b2 (sec2θ − tan2θ) = m2 − n2
⇒ a2 × 1 − b2 × 1 = m2 − n2
⇒ a2 + n2 = b2 + m2
shaalaa.com
Is there an error in this question or solution?