English

If a sec θ + b tan θ = m and b sec θ + a tan θ = n, prove that a2 + n2 = b2 + m2 - Mathematics

Advertisements
Advertisements

Question

If a sec θ + b tan θ = m and b sec θ + a tan θ = n, prove that a2 + n2 = b2 + m2

Sum

Solution

a secθ + b tanθ = m     ....(i)

b secθ + a tanθ = n     ....(ii)

Squaring both sides of the equations

a2 sec2θ + b2 tan2θ + 2ab secθ tanθ = m2
b2 sec2θ + a2 tan2θ + 2ab secθ tanθ = n2
−            −                −                        −         
a2 (sec2θ − tan2θ) − b2 (sec2θ − tan2θ) = m2 − n2

⇒ a2 × 1 − b2 × 1 = m2 − n2

⇒ a2 + n2 = b2 + m2

shaalaa.com
  Is there an error in this question or solution?
2024-2025 (February) Standard - 30/6/1
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×