Advertisements
Advertisements
प्रश्न
Using L' Hospital's rule, evaluate:
`lim_("x"→0) (1/"x"^2 - cot"x"/"x")`
उत्तर
`lim_("x"→0) (1/"x"^2-cot"x"/"x")`
`= lim_("x"→0) (1/"x"^2-1/("x"tan "x"))`
` = lim_("x"→0) (tan "x"- "x")/("x"^2 tan "x")`
` = lim_("x"→0) (tan "x"-"x")/"x"^3 . ("x"/tan"x")`
` = (lim_("x"→0) (tan"x"-"x")/"x"^3) (lim_("x"→0) "x"/(tan"x"))`
` = (lim_("x"→0) (tan"x"-"x")/"x"^3) . 1`
` = lim_("x"→0) (sec^2 "x"-1)/(3"x"^2) (0/0)`
` = (lim_("x"→0) (sec^2"x")/3) (lim_("x"→0)tan"x"/"x")`
` = lim_("x"→0) sec^2"x"/3 . 1 . = 1/3`
APPEARS IN
संबंधित प्रश्न
Using L'Hospital's rule, evaluate : `lim_(x->0) (x - sinx)/(x^2 sinx)`
Using L ‘Hospital’s Rule, evaluate:
`lim_("x"->pi/2) ("x" "tan""x" - pi/4 . "sec" "x")`
Using L’Hospital’s Rule, evaluate: limx → 0 ( 1 + sin x )cot x
If f(x) is a quadratic polynomial such that f(0) = 3, f'(2) = 2 and f'(3) = 12 then find f(x)
If f(x) = a sin x – b cos x, `"f'"(pi/4) = sqrt(2) and "f'"(pi/6)` = 2, then find f(x)
If f(2) = 4, f′(2) = 1 then find `lim_(x -> 2) [(x"f"(2) - 2"f"(x))/(x - 2)]`