Advertisements
Advertisements
प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(x + 6)/3`, g(x) = 3 – x
उत्तर
f(x) = `(x + 6)/3`, g(x) = 3 – x
fog = f[g(x)]
= f(3 – x)
= `(3 - x + 6)/3`
= `(9 - x)/3`
gof = g[f(x)]
= `"g"((x + 6)/3)`
= `3 - ((x + 6))/3`
= `(9 - x - 6)/3`
= `(3 - x)/3`
fog ≠ gof
APPEARS IN
संबंधित प्रश्न
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(2)/x`, g(x) = 2x2 – 1
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 3 + x, g(x) = x – 4
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 4x2 – 1, g(x) = 1 + x
If f(x) = 2x – 1, g(x) = `(x + 1)/(2)`, show that fog = gof = x
If f(x) = x2 – 1, g(x) = x – 2 find a, if gof(a) = 1
Find k, if f(k) = 2k – 1 and fof(k) = 5
If f(x) = x2 – 1. Find fof
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 4, g(x) = x2 and h(x) = 3x – 5
Multiple choice question :
If f(x) = 2x2 and g(x) = `1/(3x)`, then fog is
Multiple choice question :
If g = {(1, 1), (2, 3), (3, 5), (4, 7)} is a function given by g(x) = αx + β then the value of α and β are