Advertisements
Advertisements
Question
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = `(x + 6)/3`, g(x) = 3 – x
Solution
f(x) = `(x + 6)/3`, g(x) = 3 – x
fog = f[g(x)]
= f(3 – x)
= `(3 - x + 6)/3`
= `(9 - x)/3`
gof = g[f(x)]
= `"g"((x + 6)/3)`
= `3 - ((x + 6))/3`
= `(9 - x - 6)/3`
= `(3 - x)/3`
fog ≠ gof
APPEARS IN
RELATED QUESTIONS
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = x – 6, g(x) = x2
Using the function f and g given below, find fog and gof. Check whether fog = gof
f(x) = 3 + x, g(x) = x – 4
Find the value of k, such that fog = gof
f(x) = 2x – k, g(x) = 4x + 5
If f(x) = 2x – 1, g(x) = `(x + 1)/(2)`, show that fog = gof = x
Find k, if f(k) = 2k – 1 and fof(k) = 5
Let A, B, C ⊆ N and a function f: A → B be defined by f(x) = 2x + 1 and g: B → C be defined by g(x) = x2. Find the range of fog and gof.
If f : R → R and g : R → R are defined by f(x) = x5 and g(x) = x4 then check if f, g are one-one and fog is one-one?
Consider the function f(x), g(x), h(x) as given below. Show that (fog)oh = fo(goh)
f(x) = x – 1, g(x) = 3x + 1 and h(x) = x2
Multiple choice question :
If g = {(1, 1), (2, 3), (3, 5), (4, 7)} is a function given by g(x) = αx + β then the value of α and β are
If f(x)= x2, g(x) = 3x and h(x) = x – 2 Prove that (fog)oh = fo(goh)