हिंदी
महाराष्ट्र स्टेट बोर्डएसएससी (मराठी माध्यम) १० वीं कक्षा

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा. x2 + 4x – 5 = 0, x = 1, –1 - Mathematics 1 - Algebra [गणित १ - बीजगणित]

Advertisements
Advertisements

प्रश्न

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

x2 + 4x – 5 = 0, x = 1, –1

योग

उत्तर

दिलेले समीकरण,

x2 + 4x – 5 = 0     ....(i)

समीकरण (i) च्या डाव्या बाजूत x = 1 ठेवून,

डावी बाजू = (1)2 + 4(1) - 5 = 1 + 4 - 5 = 0

∴ डावी बाजू = उजवी बाजू

∴ दिलेल्या वर्गसमीकरणाचे x = 1 हे मूळ आहे.

समीकरण (i) च्या डाव्या बाजूत x = - 1 ठेवून,

डावी बाजू = (-1)2 + 4(1) - 5 = 1 - 4 - 5 = - 8

∴ डावी बाजू ≠ उजवी बाजू

∴ दिलेल्या वर्गसमीकरणाचे x = - 1 हे मूळ नाही.

shaalaa.com
वर्गसमीकरणाची मुळे (उकली)
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: वर्गसमीकरणे - सरावसंच 2.1 [पृष्ठ ३४]

APPEARS IN

बालभारती Algebra (Mathematics 1) [Marathi] 10 Standard SSC Maharashtra State Board
अध्याय 2 वर्गसमीकरणे
सरावसंच 2.1 | Q 4. (1) | पृष्ठ ३४

संबंधित प्रश्न

वर्गसमीकरणासमोर दिलेल्या चलाच्या किमती त्या समीकरणांची मुळे आहेत की नाही ते ठरवा.

2m2 - 5m = 0, m = 2, `5/2`


5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `(-7)/5` असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

उकल:

5m2 + 2m + k = 0 या वर्गसमीकरणाचे एक मूळ `square` आहे.

∴ m = `square` वरील वर्गसमीकरणात ठेवू.

∴ `5 xx square^2 + 2 xx square + k = 0`

∴ `square + square` + k = 0

∴ `square` + k = 0

∴ k = `square`


x2 + kx + k = 0 ची मुळे वास्तव व समान असतील, तर k ची किंमत खालीलपैकी कोणती?


`sqrt5m^2 - sqrt5m + sqrt5 = 0` ला खालीलपैकी कोणते विधान लागू पडते?


x2 + kx + 54 = 0 या वर्गसमीकरणाचे एक मूळ – 6 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती: x2 + kx + 54 = 0 या वर्गसमीकरणाची एक उकल –6 आहे.

म्हणून, x = ______ घेऊ.

(–6)2 + k(–6) + 54 = 0

(______) –6k + 54 = 0

–6k + ______ = 0

k = ______ 


x2 + 4x – 5 = 0 या वर्गसमीकरणाचे 1 हे मूळ आहे किंवा नाही ते ठरवण्यासाठी खालील कृती पूर्ण करा.

कृती: x = (______) असताना 

डा. बा.

= 12 + 4 (______) – 5 

= 1 + 4 – 5

= (______) – 5

= ______

= उ. बा.

म्हणून, x = 1 हे दिलेल्या समीकरणाचे मूळ आहे.


x2 – kx – 15 = 0 या वर्गसमीकरणाचे एक मूळ –3 असेल, तर k ची किंमत काढा.


एका वर्गसमीकरणाची मुळे 4 व – 5 आहेत, तर ते वर्गसमीकरण तयार करा.


असे एक शाब्दिक उदाहरण तयार करा, की त्यापासून मिळणाऱ्या वर्गसमीकरणाचे एक मूळ 5 असेल. समीकरण तयार करून लिहा. (वर्गसमीकरणासाठी तयार करण्यासाठी वय, रुपये, नैसर्गिक संख्या यांसारख्या राशींचा उपयोग करा.) (वरील उदाहरण विद्यार्थ्यांना सोयीसाठी सोडवून दाखवत आहोत. विद्यार्थी वेगळी संख्या घेऊन असेच उदाहरण तयार करून सोडवू शकतात.)

उकल: आपल्याला समीकरणाचे एक मूळ 5 हवे आहे. मग दुसरे मूळ आपण आपल्या मनाने कोणतीही संख्या (धन, ऋण, शून्य) घेऊ शकतो. मग आपण समजा इथे दुसरे मूळ 2 घेतले.

मग आपण खालीलप्रमाणे उदाहरण तयार करू शकतो,
स्मिता ही तिची बहीण मिता पेक्षा 3 वर्षांनी लहान आहे (5 - 2 = 3). दोघींच्या वयांचा गुणाकार 10 आहे (5 × 2 = 10). तर दोघींचे आजचे वय काढा. (शाब्दिक उदाहरण तयार करणे 1 गुण)

मिताचे वय x मानू.

म्हणून, स्मिताचे वय = x - 3 (याकरता 1 गुण)

दिलेल्या अटीनुसार,

x(x – 3) = 10

x2 – 3x – 10 = 0 (समीकरण तयार करणे 1 गुण) 


kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 असेल, तर k ची किंमत काढण्यासाठी खालील कृती पूर्ण करा.

कृती:

kx2 - 10x + 3 = 0 या वर्गसमीकरणाचे एक मूळ 3 आहे.

 ∴ x = `square` वरील समीकरणात ठेवू.

∴ k`(square)^2 - 10 xx square + 3 = 0`

∴ `square` - 30 + 3 = 0

∴ 9k = `square`

∴ k = `square`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×