Advertisements
Advertisements
प्रश्न
What can the maximum number of digits be in the repeating block of digits in the decimal expansion of `1/17`? Perform the division to check your answer.
उत्तर
In `1/17`, the divisor is 17.
Since the number of entries in the repeating block of digits is less than the divisor, then the maximum number of digits in the repeating block is 16.
Dividing 1 by 17, we have
0.0588235294117647...
`17)overline1.0000000000000000`
-85
150
-136
140
-136
40
-34
60
-51
90
-85
50
-34
160
-153
70
-68
20
-17
30
-17
130
-119
110
-102
80
-68
120
-119
-1
The remainder 1 is the same digit from which we started the division.
∴ `1/17` = `overline0.0588235294117647`
Thus, there are 16 digits in the repeating block in the decimal expansion of `1/17`.
Hence, our answer is verified.
APPEARS IN
संबंधित प्रश्न
You know that `1/7=0.bar142857.` Can you predict what the decimal expansions of `2/7, 3/7, 4/7, 5/7, 6/7` are, Without actually doing the long division? If so, how?
[Hint: Study the remainders while finding the value of `1/7` carefully.]
Write three numbers whose decimal expansions are non-terminating non-recurring.
Which of the following numbers can be represented as non-terminating, repeating decimals?
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.888...
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.2555...
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
`0.1bar34`
Express the following in the form `p/q`, where p and q are integers and q ≠ 0:
0.404040...
Write the following in decimal form and say what kind of decimal expansion has:
`1/11`
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.4bar7`
Express the following in the form `bb(p/q)`, where p and q are integers and q ≠ 0.
`0.bar001`