Advertisements
Advertisements
प्रश्न
What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M?
\[\ce{2 ICl(g) ⇌ I2(g) + Cl2(g)}\]; KC = 0.14
उत्तर
The given reaction is:
2 ICl(g) | ⇌ | I2(g) | + | Cl2(g) | |
Initial conc. | 0.78 M | 0 | 0 | ||
At equilibrium | (0.78 - 2x) M | x M | x M |
Now we can write, `(["I"_2]["Cl"_2])/["ICl"]^2 = "K"_"C"`
`=> (x xx x)/(0.78 - 2x)^2 = 0.14`
`=> x^2/(0.78 - 2x)^2` = 0.14
`=> x/(0.78 - 2x) = 0.374`
`=> x= 0.292 - 0.748 x`
`=> 1.748 x = 0.292`
⇒ x = 0.167
Hence, at equilibrium,
[ICl] = [I2] = 0.167 M[ICl]
= (0.78 - 2 × 0.167)M
= 0.446 M
APPEARS IN
संबंधित प्रश्न
What is Kc for the following equilibrium when the equilibrium concentration of each substance is: [SO2] = 0.60 M, [O2] = 0.82 M and [SO3] = 1.90 M?
\[\ce{2SO2(g) + O2(g) ⇌ 2SO3(g)}\]
Write the expression for the equilibrium constant, Kc for each of the following reactions:
\[\ce{2NOCl (g) ⇌ 2NO (g) + Cl2 (g)}\]
A reaction between N2 and O2 takes place as follows:
\[\ce{2N2 (g) + O2 (g) ⇌ 2N2O (g)}\]
If a mixture of 0.482 mol of N2 and 0.933 mol of O2 is placed in a 10 L reaction vessel and allowed to form N2O at a temperature for which Kc = 2.0 × 10-37, determine the composition of equilibrium mixture.
One mole of H2O and one mole of CO are taken in 10 L vessel and heated to 725 K. At equilibrium, 40% of water (by mass) reacts with CO according to the equation,
\[\ce{H2O (g) + CO (g) ⇌ H2 (g) + CO2 (g)}\]
Calculate the equilibrium constant for the reaction.
Calculate a) ΔG°and b) the equilibrium constant for the formation of NO2 from NO and O2 at 298 K
\[\ce{NO(g) + 1/2 O_2 (g) <=> NO_2(g)}\]
where ΔfG⊝ (NO2) = 52.0 kJ/mol
ΔfG⊝ (NO) = 87.0 kJ/mol
ΔfG⊝ (O2) = 0 kJ/mol
Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
\[\ce{3Fe (s) + 4H2O (g) ⇌ Fe3O4 (s) + 4H2 (g)}\]
The value of Kc for the reaction 3O2 (g) ↔ 2O3 (g) is 2.0 ×10–50 at 25°C. If the equilibrium concentration of O2 in the air at 25°C is 1.6 ×10–2, what is the concentration of O3?
For the reaction \[\ce{H2 (g) + I2 (g) ⇌ 2HI (g)}\], the standard free energy is ∆GΘ > 0. The equilibrium constant (K ) would be ______.
On increasing the pressure, in which direction will the gas phase reaction proceed to re-establish equilibrium, is predicted by applying the Le Chatelier’s principle. Consider the reaction.
\[\ce{N2 (g) + 3H2 (g) ⇌ 2NH3 (g)}\]
Which of the following is correct, if the total pressure at which the equilibrium is established, is increased without changing the temperature?
At 500 K, equilibrium constant, \[\ce{K_c}\], for the following reaction is 5.
\[\ce{1/2 H2 (g) + 1/2 I2 (g) ⇌ HI (g)}\]
What would be the equilibrium constant \[\ce{K_c}\] for the reaction
\[\ce{2HI (g) ⇌ H2 (g) + I2 (g)}\]
The stepwise formation of [Cu(NH3)4]2+ is given below:
\[\ce{Cu^{2+} + NH3 <=>[K1] [Cu(NH3)]^{2+}}\]
\[\ce{[Cu(NH3)]^{2+} + NH3 <=>[K2] [Cu(NH3)2]^{2+}}\]
\[\ce{[Cu(NH3)2]^{2+} + NH3 <=>[K3] [Cu(NH3)3]^{2+}}\]
\[\ce{[Cu(NH3)3]^{2+} + NH3 <=>[K4] [Cu(NH3)4]^{2+}}\]
The value of stability constants K1, K2, K3 and K4 are 104, 1.58 × 102, 5 × 103 and 102 respectively. The overall equilibrium constant for dissociation of [Cu(NH3)4]2+ is x × 10−12. The value of x is ______. (Rounded-off to the nearest integer)
For the reaction \[\ce{A(g) <=> B(g)}\] at 495 K, ΔG° = −9.478 kJ mol−1
If we start the reaction in a closed container at 495 K with 22 millimoles of A, the amount of B in the equilibrium mixture is ______ millimoles. (Round off to the Nearest Integer).
[R = 8.314 J mol−1 K−1; ln 10 = 2.303]
An equilibrium system for the reaction between hydrogen and iodine to give hydrogen iodide at 765 K in a 5 litre volume contains 0.4 mole of hydrogen, 0.4 mole of iodine and 2.4 moles of hydrogen iodide.
\[\ce{H2 + I2 <=> 2HI}\]
The equilibrium constant for the reaction is:
Sulphide ion in alkaline solution reacts with solid sulphur to form polysulphide ions having formula, \[\ce{S^{2-}2}\], \[\ce{S^{2-}3}\], \[\ce{S^{2-}4}\], etc. if K1 = 12 for \[\ce{S + S^{2-} <=> S^{2-}2}\] and K2 = 132 for \[\ce{2S + S^{2-} <=> S^{2-}3}\], K3 = ______ for \[\ce{S + S^{2-}2 <=> S^{2-}3}\].
For which of the following Kp is less than Kc?
The decomposition of N2O4 to NO2 was carried out in chloroform at 280°C. At equilibrium, 0.2 mol of N2O4 and 2 × 10−3 mol of NO2 were present in 2 ℓ of the solution. The equilibrium constant for the reaction \[\ce{N2O4 <=> 2NO2}\] is ______.
In which one of the following equilibria, KP ≠ Kc?