Advertisements
Advertisements
प्रश्न
What must be the ratio of the slit width to the wavelength of light for a single slit to have the first diffraction minimum at 45.0°?
उत्तर
Data: θ = 45°, m = 1
a sin θ = mλ for (m = 1, 2, 3... minima)
Here, m = 1 (First minimum)
∴ a sin 45° = (1)λ
∴ `"a"/lambda = 1/(sin 45^circ)`
∴ `"a"/lambda` = 1.414
APPEARS IN
संबंधित प्रश्न
In Fraunhoffer diffraction by a narrow slit, a screen is placed at a distance of 2 m from the lens to obtain the diffraction pattern. If the slit width is 0.2 mm and the first minimum is 5 mm on either side of the central maximum, find the wavelength of light.
What must be the ratio of the slit width to the wavelength for a single slit, to have the first diffraction minimum at 45˚?
Compare Young’s Double Slit Interference Pattern and Single Slit Diffraction Pattern.
In biprism experiment, the distance between source and eyepiece is 1.2 m, the distance between two virtual sources is 0.84 mm. Then the wavelength of light used if eyepiece is to be moved transversely through a distance of 2.799 cm to shift 30 fringes is ______.
A lens having focal length f gives Fraunhofer type diffraction pattern of a slit having width a. If wavelength of light is λ, the distance of first dark band and next bright band from axis is given by ____________.
A diffraction is obtained by using a beam of yellow light. What will happen if the yellow light is replaced by the red light?
Light of wavelength 'λ' is incident on a single slit of width 'a' and the distance between slit and screen is 'D'. In diffraction pattern, if slit width is equal to the width of the central maximum then 'D' is equal to ______.
A slit of width a is illuminated by white light. For red light `(λ = 6500 Å)`, the first minima is obtained at θ = 60°. Then the value of a will be ______.
In a single slit diffraction experiment. fir t minimum for red light (589 nm) coincides with first maximum of some other wavelength `lambda'`. The value of `lambda'` is ______.
The angular spread of central maximum, in diffraction pattern, does not depend on ______.
The diffraction fringes obtained by a single slit are of ____________.
Select the CORRECT statement from the following.
A plane wavefront of wavelength `lambda`. is incident on a slit of width a. The angular width of principal maximum is ______.
When two coherent sources in Young's experiment are far apart, then interference pattern ______
In Fraunhofer diffraction due to single slit, the angular width of central maximum does 'NOT' depend on ______
A parallel beam of monochromatic light of wavelength 5 × 10-7 m is incident normally on a single narrow slit of width 10-3 mm. At what angle of diffraction, the first minima are observed?
In a Young's double-slit experiment, let β be the fringe width, and let I0 be the intensity at the central bright fringe. At a distance x from the central bright fringe, the intensity will be ______.
The increase in energy of a metal bar of length 'L' and cross-sectional area 'A' when compressed with a load 'M' along its length is ______.
(Y = Young's modulus of the material of metal bar)
In Young's double experiment, in air interference pattern second minimum is observed exactly in front of one slit. The distance between the two coherent source is 'd' and the distance between source and screen is 'D'. The wavelength of light source used is ______.
A mixture of light, consisting of wavelength 590 nm and an unknown wavelength, illuminates Young's double slit and gives rise to two overlapping intererence patterns on the screen. The central maximum of both lights coincides.
Further, it is observed that the third bright fringe of known light coincides with the 4th bright fringe of the unknown light. From this data the wavelength of the unknown light is ______.
The angular separation of the central maximum in the Fraunhofer diffraction pattern is measured. The slit is illuminated by the light of wavelength 6000 Å. If the slit is illuminated by light of another wavelength, the angular separation decreases by 30%. The wavelength of light used is ______.
In Young's double slit experiment, the 8th maximum with wavelength λ1 is at a distance d1 from the central maximum and the 6th maximum with a wavelength λ2 is at a distance d2. Then d1/d2 is equal to ______.
The first diffraction minimum due to single slit diffraction is θ, for a light wavelength 5000 Å. If the width of slit is 1 × 10-4 cm, then the value of θ is ______.
Two coherent monochromatic light beams of amplitudes E10 and E20 produce an interference pattern. The ratio of the intensities of the maxim a and minima in the interference pattern is ______.
In a biprism experiment, the slit is illuminated by red light of wavelength 6400 A and the crosswire of eyepiece is adjusted to the centre of 3rd bright band. By using blue light it is found that 4th bright band is at the centre of the cross wire. Calculate the wavelength of blue light.
State the characteristics of a single slit diffraction pattern.