Advertisements
Advertisements
प्रश्न
What should be added to x2 + xy + y2 to obtain 2x2 + 3xy?
उत्तर
Let a be the required term.
a + (x2 + y2 + xy) = 2x2 + 3xy
a = 2x2 + 3xy - (x2 + y2 + xy)
a = 2x2 + 3xy - x2 - y2 - xy
a = 2x2 - x2 - y2 + 3xy - xy
= x2 - y2 + 2xy
APPEARS IN
संबंधित प्रश्न
Subtract: 4a − 7ab + 3b + 12 from 12a − 9ab + 5b − 3
Add: t - 8tz, 3tz - z, z - t
Subtract: - 5y2 from y2
Subtract:
\[\frac{2}{3} y^3 - \frac{2}{7} y^2 - 5 \text { from }\frac{1}{3} y^3 + \frac{5}{7} y^2 + y - 2\]
If \[x + \frac{1}{x} = 12,\] find the value of \[x - \frac{1}{x} .\]
Add:
−3y2 + 10y − 16; 7y2 + 8
a(b + c) = a × ____ + a × _____.
Add the following expressions:
x3 – x2y – xy2 – y3 and x3 – 2x2y + 3xy2 + 4y
Add the following expressions:
p2 – q + r, q2 – r + p and r2 – p + q
Write two different algebraic expressions for the word phrase "`(1/4)` of the sum of x and 7.”